Skip to main content

Design Considerations of Mission-Oriented Sensor Node Architectures

  • Chapter
  • First Online:
Mission-Oriented Sensor Networks and Systems: Art and Science

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 163))

Abstract

In research and education, a Wireless Sensor Network (WSN) may exist for its own sake and also the specific nodes used in such networks might be considered as study objects. However, in real applications the networks and the nodes are applied to solve real-world issues and, hence, have to be designed for their specific purpose. Since WSNs and according nodes have to cope with significant limitations and challenges, especially regarding energy budgets, it is typically considered as impractical to use a ‘one size fits all’ network configuration or a ‘one size fits all’, universal sensor node. Instead, it is necessary for every single component of a node, like processor, memory, radio transceiver, set of sensors, peripherals, and energy source to consider what is necessary and they have to be chosen according to the needs of the envisaged use case. Therefore, designing or at least selecting appropriate nodes is a crucial part for every deployment of WSNs. Based on that also the used networking technologies, the topology, the protocols, etc. have to be developed and chosen. In this chapter, first some general considerations and architectures for sensor nodes are presented. Also, some insights of’how to design’ the adequate node for specific use cases are given. The design of sensor nodes for two exemplary missions are discussed in detail. In particular the diverse missions Human Activity Monitoring and Smart Farming are used to reveal the specialty when designing mission-oriented sensor nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As from May, 2017.

  2. 2.

    https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html.

  3. 3.

    http://www.nongnu.org/avrdude/.

  4. 4.

    http://www.atmel.com/tools/rzusbstick.aspx.

  5. 5.

    http://www.ibr.cs.tu-bs.de/projects/inga.

References

  1. Doolin, D.M., Sitar, N.: Wireless sensors for wildfire monitoring. Proceedings of SPIE 5765, 477–484 (2005)

    Article  Google Scholar 

  2. Li, Y., Wang, Z., Song, Y.: Wireless sensor network design for wildfire monitoring. In: The Sixth World Congress on Intelligent Control and Automation: WCICA 2006, vol. 1, pp. 109–113 IEEE (2006)

    Google Scholar 

  3. Korber, H.-J., Wattar, H., Scholl, G.: Modular wireless real-time sensor/actuator network for factory automation applications. IEEE Trans. Indust. Informat. 3(2), 111–119 (2007)

    Article  Google Scholar 

  4. Frotzscher, A., Wetzker, U., Bauer, M., Rentschler, M., Beyer, M., Elspass, S., Klessig, H.: Requirements and current solutions of wireless communication in industrial automation. In: 2014 IEEE International Conference on Communications Workshops (ICC), pp. 67–72, IEEE (2014)

    Google Scholar 

  5. IEEE, IEEE standard for a precision clock synchronization protocol for networked measurement and control systems. IEEE Std 1588–2008 (Revision of IEEE Std 1588–2002), pp. 1–300, July 2008

    Google Scholar 

  6. Scheiterer, R.L., Na, C., Obradovic, D., Steindl, G.: Synchronization performance of the precision time protocol in industrial automation networks. IEEE Trans. Instrum. Meas. 58(6), 1849–1857 (2009)

    Article  Google Scholar 

  7. von Zengen, G., Garlichs, K., Schröder, Y., Wolf, L.C.: A sub-microsecond clock synchronization protocol for wireless industrial monitoring and control networks. In: IEEE International Conference on Industrial Technology (ICIT), pp. 1266–1270 IEEE (2017)

    Google Scholar 

  8. Akhlaq, M., Sheltami, T.R.: RTSP: an accurate and energy-efficient protocol for clock synchronization in WSNs. IEEE Trans. Instrum. Meas. 62(3), 578–589 (2013)

    Article  Google Scholar 

  9. Dunkels, A., Grönvall, B., Voigt, T.: Contiki—a lightweight and flexible operating system for tiny networked sensors. In: Proceedings of the First IEEE Workshop on Embedded Networked Sensors (Emnets-I) Nov 2004, Tampa, Florida, USA (2004)

    Google Scholar 

  10. Baccelli, E., Hahm, O., Gunes, M., Wahlisch, M., Schmidt, T.C.: RIOT OS: towards an OS for the Internet of Things. In: 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 79–80 IEEE (2013)

    Google Scholar 

  11. Real Time Engineers Ltd.: FreeRTOS—Market leading RTOS (Real Time Operating System) for Embedded Systems with Internet of Things Extensions. http://www.freertos.org/

  12. Seller, O., Sornin, N.: Low Power Long Range Transmitter. EP Patent App. EP20, 130, 154, 071, 6 Aug 2014

    Google Scholar 

  13. Espressif Systems: ESP32 Datasheet. https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (2017)

  14. Texas Instruments, Incorporated: A USB-Enabled System-On-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee Applications. http://www.ti.com/lit/gpn/cc2531 (2010)

  15. Atmel Corporation: 8-bit AVR Microcontroller with Low Power 2.4GHz Transceiver for ZigBee and IEEE 802.15.4. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8393-MCU_Wireless-ATmega256RFR2-ATmega128RFR2-ATmega64RFR2_Datasheet.pdf (2014)

  16. Moteiv Corporation: Tmote Sky : Datasheet. http://www.bandwavetech.com/download/tmote-sky-datasheet.pdf (2006)

  17. Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-Gibollet, R., Saint-Marcel, F., Schreiner, G., Vandaele, J., et al.: FIT IoT-LAB: a large scale open experimental IoT testbed. In: IEEE 2nd World Forum on Internet of Things (WF-IoT), vol. 2015, pp. 459–464, IEEE (2015)

    Google Scholar 

  18. Lim, R., Ferrari, R., Zimmerling, M., Walser, C., Sommer, P., Beutel, J.: Flocklab: a testbed for distributed, synchronized tracing and profiling of wireless embedded systems. In: Proceedings of the 12th International Conference on Information Processing in Sensor Networks (IPSN) ACM, pp. 153–166 (2013)

    Google Scholar 

  19. Doddavenkatappa, M., Chan, M.C., Ananda, A.L.: Indriya: a low-cost, 3d wireless sensor network testbed. In: International Conference on Testbeds and Research Infrastructures, pp. 302–316, Springer (2011)

    Google Scholar 

  20. Texas Instruments, Incorporated: MSP430F15x, MSP430F16x, MSP430F161x. Mixed Signal Microcontroller. http://www.ti.com/lit/gpn/msp430f1611 (2011)

  21. Texas Instruments, Incorporated: 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver. http://www.ti.com/lit/gpn/cc2420 (2013)

  22. Texas Instruments: MSP430 Flash Device Bootloader (BSL), SLAU319M. http://www.ti.com/lit/ug/slau319m/slau319m.pdf (2017)

  23. Alliance, T.: TinyOS 2.1 adding threads and memory protection to TinyOS. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, ser. SenSys ’08. New York, NY, USA: ACM, pp. 413–414. https://doi.org/10.1145/1460412.1460479 (2008)

  24. O’Donovan, T., Brown, J., Büsching, F., Cardoso, A., Cecelio, Do O, J., Furtado, P., Gil, P., Jugel, A., Pöttner, W.-B., Roedig, U., Silva, J., Sreenan, C., Vassiliou, V.,  Voig, L.W.T., Zinonos, Z.: The GINSENG system for wireless monitoring and control: design and deployment experiences. ACM Trans. Sensor Netw. (TOSN), vol. 10, no. 3, accepted for publication, Aug 2014

    Article  Google Scholar 

  25. Durvy, M., Abeillé, J., Wetterwald, P., O’Flynn, C., Leverett, B., Gnoske, E., Vidales, M., Mulligan, G., Tsiftes, N., Finne, N., Dunkels, A.: Making Sensor Networks ipv6 Ready. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor System ser. SenSys ’08. New York, NY, USA: ACM, pp. 421–422. https://doi.org/10.1145/1460412.1460483 (2008)

  26. Eichelberg, M., Hein, A., Büsching, F., Wolf, L.: The GAL middleware platform for AAL. In: Proceedings of the 12th IEEE International Conference on e-Health Networking Applications and Services (Healthcom), pp. 1–6 (2010)

    Google Scholar 

  27. Chen, J., Kwong, K., Chang, D., Luk, J., Bajcsy, R.: Wearable sensors for reliable fall detection. In: proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society. IEEE-EMBS, vol. 2005 (01), pp. 3551–3554 (2005)

    Google Scholar 

  28. Marschollek, M., Wolf, K.H., Gietzelt, M., Nemitz, G., Meyer zu Schwabedissen, Haux, R.: Assessing elderly persons’ fall risk using spectral analysis on accelerometric data—a clinical evaluation study,” in the 30th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2008, 2008, pp. 3682–3685

    Google Scholar 

  29. Greene, B., McGrath, D., O’Donovan, K., O’Neill, R., Burns, A., Caulfield, B.: Adaptive estimation of temporal gait parameters using body-worn gyroscopes. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 4, pp. 1296–1299 31, Sept 2010

    Google Scholar 

  30. Bianchi, F., Redmond, S., Narayanan, M., Cerutti, S., Celler, B., Lovell, N.: Falls event detection using triaxial accelerometry and barometric pressure measurement. In: Proceedings of the 31th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBC 2009, pp. 6111–6114 Sept 2009

    Google Scholar 

  31. Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN 2005. Piscataway, NJ, USA: IEEE Press, 2005, p. 48

    Google Scholar 

  32. Lorincz, K., Chen, B.-R., Challen, G.W., Chowdhury, A.R., Patel, S., Bonato, P., Welsh, M.: Mercury: a wearable sensor network platform for high-fidelity motion analysis. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, ser. SenSys ’09. New York, NY, USA: ACM, pp. 183–196. https://doi.org/10.1145/1644038.1644057 (2009)

  33. Welk, G.J., McClain, J.J., Eisenmann, J.C., Wickel, E.E.: Field validation of the MTI actigraph and bodyMedia Armband monitor using the IDEEA monitor. Obesity 15(4), 918–928. https://doi.org/10.1038/oby.2007.624 (2007)

    Article  Google Scholar 

  34. Büsching, F., Kulau, U., Wolf, L.: Architecture and evaluation of INGA an inexpensive node for general applications. In: 2012 IEEE Sensors, Oct 2012, pp. 1–4

    Google Scholar 

  35. Atmel Corporation: AVR2016: RZRAVEN Hardware User’s Guide, 2011, Rev. 8117D-AVR-04/08. http://www.atmel.com/dyn/resources/prod_documents/doc8117.pdf

  36. Büsching, F., Figur, A., Schürmann, D., Wolf, L.: Poster: utilizing hardware AES encryption for WSNs. In: Proceedings of the 10th European Conference on Wireless Sensor Networks, ser. EWSN 2013, Ghent, Belgium, Feb 2013, pp. 33–36. http://www.ibr.cs.tu-bs.de/papers/buesching-ewsn2013.pdf

  37. von Zengen, G., Schröder, Y., Rottmann, S., Büsching, F., Wolf, L.C.: No-cost distance estimation using standard WSN radios. In: Proceedings of the 35th Annual IEEE International Conference on Computer Communications (INFOCOM 2016), San Francisco, USA, Apr 2016

    Google Scholar 

  38. Atmel Corporation: AVR2006: Design and characterization of the Radio Controller Board’s 2.4GHz PCB Antenna, Rev. 8095A-AVR-08/07. http://www.atmel.com/dyn/resources/prod_documents/doc8095.pdf (2017)

  39. Büsching, F., Kulau, U., Gietzelt, M., Wolf, L.: Comparison and validation of capacitive accelerometers for health care applications. Comput. Methods Prog. Biomed. 10

    Google Scholar 

  40. Future Technology Devices International Ltd.: TBit Bang Modes For The FT232R and FT245R, Application Note AN 232R-01 (2012)

    Google Scholar 

  41. Dunkels, A.: Rime—a lightweight layered communication stack for sensor networks. In: Proceedings of the European Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft, The Netherlands. Citeseer (2007)

    Google Scholar 

  42. Kulau, U., Büsching, F., Wolf, L.: A node’s life: increasing WSN lifetime by dynamic voltage scaling. In: Proceedings of the 9th IEEE International Conference on Distributed Computing in Sensor Systems 2013 (IEEE DCoSS 2013), Cambridge, USA, May 2013

    Google Scholar 

  43. Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor network simulation with COOJA. In: Proceedings of the First IEEE International Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2006), Tampa, Florida, USA, Nov 2006. http://www.sics.se/nes/osterlind06crosslevel.pdf

  44. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation with precise timing. In: Proccedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN. IEEE, vol. 2005, pp. 477–482 (2005)

    Google Scholar 

  45. Kulau, U., Rottmann, S., Schildt, S., van Balen, J., Wolf, L.C.: Undervolting in real world WSN applications: a long-term study. In: Proceedings of the International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 9–16, IEEE (2016)

    Google Scholar 

  46. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: experiences from a pilot sensor network deployment in precision agriculture. In: Proceedings of the 20th IEEE International Parallel and Distributed Processing Symposium, ser. IPDPS vol. 2006, 8 (2006)

    Google Scholar 

  47. Kaewmard, N., Saiyod, S.: Sensor data collection and irrigation control on vegetable crop using smart phone and wireless sensor networks for smart farm. In: IEEE Conference on Wireless Sensors (ICWiSE), pp. 106–112, IEEE (2014)

    Google Scholar 

  48. Ojha, T., Misra, S., Raghuwanshi, N.S.: Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agr. 118, 66–84 (2015)

    Article  Google Scholar 

  49. Priya, S., Inman, D.J.: Energy Harvesting Technologies, vol. 21. Springer (2009)

    Google Scholar 

  50. Beutel, J., Buchli, B., Ferrari, F., Keller, M., Zimmerling, M., Thiele, L.: X-Sense: sensing in extreme environments. In: Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE 2011, pp. 1–6 (2011)

    Google Scholar 

  51. Navarro, M., Davis, T.W., Liang, Y., Liang, X.: A study of long-term WSN deployment for environmental monitoring. In: Proceedings of the 24th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sept 2013

    Google Scholar 

  52. Wennerstrom, H., Hermans, F., Rensfelt, O., Rohner, C., Norden, L.-A.: A long-term study of correlations between meteorological conditions and 802.15. 4 link performance. In: 2013 10th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 221–229. IEEE (2013)

    Google Scholar 

  53. Boano, C.A., Wennerström, H.M., Zúñiga, A., Brown, J., Keppitiyagama, C., Oppermann, F.J., Roedig, U., Nordén, L.-Å., Voigt, T., Römer, K.: Hot packets: a systematic evaluation of the effect of temperature on low power wireless transceivers. In: Proceedings of the 5th Extreme Conference on Communication (ExtremeCom), pp. 7–12. ACM, Aug 2013

    Google Scholar 

  54. Boano, C.A., Zuniga, M.A., Brown, J., Roedig, U., Keppitiyagama, C., Roemer, K.: TempLab: a testbed infrastructure to study the impact of temperature on wireless sensor networks. In: Proceedings of the 13th International Conference on Information Processing in Sensor Networks (IPSN ’14), pp. 95–106. ACM, Apr 2014

    Google Scholar 

  55. Schmidt, F., Ceriotti, M., Hauser, N., Wehrle, K.: If you can’t take the heat: temperature effects on low-power wireless networks and how to mitigate them. In: 12th European Conference on Wireless Sensor Networks (EWSN 2015). Feb 2015

    Google Scholar 

  56. Jackson, R.D., Idso, S., Reginato, R., Pinter, P.: Canopy temperature as a crop water stress indicator. Water Resour. Res. 17(4), 1133–1138 (1981)

    Article  Google Scholar 

  57. Rottmann, S., Hartung, R., Käberich, J., Wolf, L.C.: Amphisbaena: a two-platform DTN node. In: The 13th International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2016), Brasilia, Brazil, Oct 2016

    Google Scholar 

  58. Gernert, B., Rottmann, S., Wolf, L.C.: Poster: PotatoMesh–A Solar Powered WSN Testbed. Paderborn, Germany (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büsching, F., Garlichs, K., Kulau, U., Rottmann, S., Wolf, L. (2019). Design Considerations of Mission-Oriented Sensor Node Architectures. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-91146-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91146-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91145-8

  • Online ISBN: 978-3-319-91146-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics