Advertisement

Topical Application of Connexin43 Hemichannel Blocker Reduces Carotid Body-Mediated Chemoreflex Drive in Rats

  • David C. Andrade
  • Rodrigo Iturriaga
  • Camilo Toledo
  • Claudia M. Lucero
  • Hugo S. Díaz
  • Alexis Arce-Álvarez
  • Mauricio A. Retamal
  • Noah J. Marcus
  • Julio Alcayaga
  • Rodrigo Del RioEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1071)

Abstract

The carotid body (CB) is the main arterial chemoreceptor involved in oxygen sensing. Upon hypoxic stimulation, CB chemoreceptor cells release neurotransmitters, which increase the frequency of action potentials in sensory nerve fibers of the carotid sinus nerve. The identity of the molecular entity responsible for oxygen sensing is still a matter of debate; however several ion channels have been shown to be involved in this process. Connexin-based ion channels are expressed in the CB; however a definitive role for these channels in mediating CB oxygen sensitivity has not been established. To address the role of these channels, we studied the effect of blockers of connexin-based ion channels on oxygen sensitivity of the CB. A connexin43 (Cx43) hemichannel blocking agent (CHBa) was applied topically to the CB and the CB-mediated hypoxic ventilatory response (FiO2 21, 15, 10 and 5%) was measured in adult male Sprague-Dawley rats (~250 g). In normoxic conditions, CHBa had no effect on tidal volume or respiratory rate, however Cx43 hemichannels inhibition by CHBa significantly impaired the CB-mediated chemoreflex response to hypoxia. CHBa reduced both the gain of the hypoxic ventilatory response (HVR) and the maximum HVR by ~25% and ~50%, respectively. Our results suggest that connexin43 hemichannels contribute to the CB chemoreflex response to hypoxia in rats. Our results suggest that CB connexin43 hemichannels may be pharmacological targets in disease conditions characterized by CB hyperactivity.

Keywords

Carotid body Chemoreflex Connexin43 Hypoxia 

Notes

Acknowledgments

This study was supported by Fondecyt 1140275 and 1180172 (RDR) and Fondecyt 1160227 (MAR). NJM is supported by a grant from the National Institutes of Health (HL-138600-01).

References

  1. Abudara V, Eyzaguirre C (1994) Electrical coupling between cultured glomus cells of the rat carotid body: observations with current and voltage clamping. Brain Res 664:257–265CrossRefGoogle Scholar
  2. Abudara V, Garcés G, Sáez JC (1999) Cells of the carotid body express connexin43 which is up-regulated by cAMP. Brain Res 849:25–33CrossRefGoogle Scholar
  3. Abudara V, Eyzaguirre C, Sáez JC (2000) Short- and long-term regulation of rat carotid body gap junctions by cAMP. Identification of connexin43, a gap junction subunit. Adv Exp Med Biol 475:359–369CrossRefGoogle Scholar
  4. Abudara V, Jiang RG, Eyzaguirre C (2001) Acidic regulation of junction channels between glomus cells in the rat carotid body. Possible role of [Ca(2+)]. Brain Res 916:50–60CrossRefGoogle Scholar
  5. Buckler KJ, Williams BA, Orozco RV, Wyatt CN (2006) The role of TASK-like K+ channels in oxygen sensing in the carotid body. Novartis Found Symp 272:73–85PubMedGoogle Scholar
  6. Buerk DG, Osanai S, Mokashi A, Lahiri S (1998) Dopamine, sensory discharge, and stimulus interaction with CO2 and O2 in cat carotid body. J Appl Physiol 85:1719–1726CrossRefGoogle Scholar
  7. Chen J, He L, Dinger B, Stensaas L, Fidone S (2002) Chronic hypoxia upregulates connexin43 expression in rat carotid body and petrosal ganglion. J Appl Physiol 92:1480–1486CrossRefGoogle Scholar
  8. Contreras JE, Sáez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci U S A 100(20):11388–11393CrossRefGoogle Scholar
  9. Del Rio R, Moya EA, Iturriaga R (2010) Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link. Eur Respir J 36(1):143–150CrossRefGoogle Scholar
  10. Del Rio R, Marcus NJ, Schultz HD (2013) Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J Am Coll Cardiol 62(25):2422–2430CrossRefGoogle Scholar
  11. Del Rio R, Moya EA, Iturriaga R (2014) Carotid body potentiation during chronic intermittent hypoxia: implication for hypertension. Front Physiol 5:434PubMedPubMedCentralGoogle Scholar
  12. Del Rio R, Andrade DC, Toledo C et al (2017) Carotid body-mediated Chemoreflex drive in the setting of low and high output heart failure. Sci Rep 7:8035CrossRefGoogle Scholar
  13. Iturriaga R, Alcayaga J (2004) Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Brain Res Rev 46:46–53CrossRefGoogle Scholar
  14. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240CrossRefGoogle Scholar
  15. Kondo H, Iwasa H (1996) Re-examination of the carotid body ultrastructure with special attention to intercellular membrane appositions. Adv Exp Med Biol 410:45–50CrossRefGoogle Scholar
  16. Lipski J, McAllen RM, Spyer KM (1977) The carotid chemoreceptor input to the respiratory neurones of the nucleus of tractus solitarus. J Physiol 269:797–810CrossRefGoogle Scholar
  17. López-Barneo J, Ortega-Sáenz P, Pardal R, Pascual A, Piruat JI (2008) Carotid body oxygen sensing. Eur Respir J 32:1386–1398CrossRefGoogle Scholar
  18. López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P (2016) Oxygen sensing by the carotid body: mechanisms and role in adaptation to hipoxia. Am J Physiol Cell Physiol 310:629–642CrossRefGoogle Scholar
  19. Monti-Bloch L, Abudara V, Eyzaguirre C (1993) Electrical communication between glomus cells of the rat carotid body. Brain Res 622:119–131CrossRefGoogle Scholar
  20. Moore LG, Harrison GL, McCullough RE, McCullough RG, Micco AJ, Tucker A, Weil JV, Reeves JT (1986) Low acute hypoxic ventilatory response and hypoxic depression in acute altitude sickness. J Appl Physiol 60:1407–1412CrossRefGoogle Scholar
  21. Murali S, Nurse CA (2016) Purinergic signalling mediates bidirectional crosstalk between chemoreceptor type I and glial-like type II cells of the rat carotid body. J Physiol 594:391–406CrossRefGoogle Scholar
  22. Nurse CA (2017) A sensible approach to making sense of oxygen sensing. J Physiol 595:6087–6088CrossRefGoogle Scholar
  23. Nurse CA, Piskuric NA (2013) Signal processing at mammalian carotid body chemoreceptors. Semin Cell Dev Biol 24:22–30CrossRefGoogle Scholar
  24. Nurse CA, Zhang M (1999) Acetylcholine contributes to hypoxic chemotransmission in co cultures of rat type 1 cells and petrosal neurons. Respir Physiol 115:189–199CrossRefGoogle Scholar
  25. Orellana JA, Stehberg J (2014) Hemichannels: new roles in astroglial function. Front Physiol 17:193Google Scholar
  26. Prabhakar NR, Peng YJ (2017) Oxygen sensing by the carotid body: past and present. Adv Exp Med Biol 977:3–8CrossRefGoogle Scholar
  27. Retamal MA (2014) Connexin and Pannexin hemichannels are regulated by redox potential. Front Physiol 25:80Google Scholar
  28. Retamal MA, García IE, Pinto BI, Pupo A, Báez D, Stehberg J, Del Rio R, González C (2016) Extracellular cysteine in connexins: role as redox sensors. Front Physiol 28:1Google Scholar
  29. Reyes EP, Cerpa V, Corvalán L, Retamal MA (2014) Cxs and Panx- hemichannels in peripheral and central chemosensing in mammals. Front Cell Neurosci 8:123CrossRefGoogle Scholar
  30. Sáez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224CrossRefGoogle Scholar
  31. Smith PG, Mills E (1976) Autoradiographic identification of the terminations of petrosal ganglion neurons in the cat carotid body. Brain Res 113:174–178CrossRefGoogle Scholar
  32. Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverría C, Orellana JA, Bultynck G, Ponsaerts R, Leybaert L, Simon F, Sáez JC, Retamal MA (2012) Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 26:3649–3657CrossRefGoogle Scholar
  33. Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Bultynck G, Leybaert L (2013) Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+−triggered Cx43hemichannel opening. Neuropharmacology 75:506–516CrossRefGoogle Scholar
  34. Wang J, Ma A, Xi J, Wang Y, Zhao B (2014) Connexin 43 and its hemichannels mediate hypoxia-ischemia-induced cell death in neonatal rats. Child Neurol Open 1:2329048x14544955PubMedPubMedCentralGoogle Scholar
  35. Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525:143–158CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David C. Andrade
    • 1
  • Rodrigo Iturriaga
    • 2
  • Camilo Toledo
    • 1
  • Claudia M. Lucero
    • 1
  • Hugo S. Díaz
    • 1
  • Alexis Arce-Álvarez
    • 1
  • Mauricio A. Retamal
    • 3
  • Noah J. Marcus
    • 4
  • Julio Alcayaga
    • 5
  • Rodrigo Del Rio
    • 1
    • 6
    • 7
    Email author
  1. 1.Laboratory of Cardiorespiratory Control, Department of Physiology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Laboratorio de Neurobiología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Centro de Fisiología Celular e IntegrativaClínica Alemana Universidad Del DesarrolloSantiagoChile
  4. 4.Department of Physiology and PharmacologyDes Moines UniversityDes MoinesUSA
  5. 5.Laboratorio de Fisiología CelularUniversidad de ChileSantiagoChile
  6. 6.Centro de Envejecimiento y Regeneración (CARE)Pontificia Universidad Católica de ChileSantiagoChile
  7. 7.Centro de Excelencia en Biomedicina de Magallanes (CEBIMA)Universidad de MagallanesPunta ArenasChile

Personalised recommendations