Advertisement

Role of Estradiol Receptor Beta (ERβ) on Arterial Pressure, Respiratory Chemoreflex and Mitochondrial Function in Young and Aged Female Mice

  • Sofien Laouafa
  • Damien Roussel
  • François Marcouiller
  • Jorge Soliz
  • Aida Bairam
  • Vincent JosephEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1071)

Abstract

We tested the hypothesis that ERβ is involved in respiratory control in female mice. We used young adult (5–6 months-old) and aged (17–18 months-old) ERβKO or wild-type controls (WT) female mice to assess arterial blood pressure (via a tail-cuff sensor) and indices of respiratory pattern (sighs and apneas – recorded by whole body plethysmography at rest). We also measured respiratory parameters at rest and in response to brief (<10 min) exposure to hypoxia (12% O2) or hypercapnia (5% CO2). Because ERβ is localized in mitochondria, and because estradiol and ERβ agonist increase mitochondrial O2 consumption, we assessed the mitochondrial respiration (with a high-resolution oxygraph system) and the in vitro activity of the complex I of the electron transfer chain in samples of brain cortex in aged wild-type and ERβKO female mice. Compared to young WT mice, young ERβKO mice had elevated arterial blood pressure, but similar ventilatory responses to hypoxia and hypercapnia. In old ERβKO female mice compared to old WT mice, the arterial blood pressure was lower, the frequency of sighs was higher and the frequency of apneas was lower, and the hypoxic and hypercapnic ventilatory responses were reduced. In old ERβKO mice mitochondrial respiration and complex I activities in the brain cortex were lower than in WT mice. We conclude that ERβ has age-specific effects on vascular and respiratory functions in female mice.

Keywords

Estradiol receptor beta Old mice Arterial pressure Chemoreflex Mitochondria Female mice 

References

  1. Arnold S, Victor MB, Beyer C (2012) Estrogen and the regulation of mitochondrial structure and function in the brain. J Steroid Biochem Mol Biol 131(1–2):2–9.  https://doi.org/10.1016/j.jsbmb.2012.01.012 CrossRefPubMedGoogle Scholar
  2. Bastianini S, Alvente S, Berteotti C, Lo Martire V, Silvani A, Swoap SJ, Valli A, Zoccoli G, Cohen G (2017) Accurate discrimination of the wake-sleep states of mice using non-invasive whole-body plethysmography. Sci Rep 7:41698.  https://doi.org/10.1038/srep41698 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bayliss DA, Cidlowski JA, Millhorn DE (1990) The stimulation of respiration by progesterone in ovariectomized cat is mediated by an estrogen-dependent hypothalamic mechanism requiring gene expression. Endocrinology 126:519–527CrossRefGoogle Scholar
  4. Behan M, Wenninger JM (2008) Sex steroidal hormones and respiratory control. Respir Physiol Neurobiol 164(1–2):213–221.  https://doi.org/10.1016/j.resp.2008.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bixler EO, Vgontzas AN, Lin HM, Ten Have T, Rein J, Vela-Bueno A, Kales A (2001) Prevalence of sleep-disordered breathing in women: effects of gender. Am J Respir Crit Care Med 163(3 Pt 1):608–613CrossRefGoogle Scholar
  6. Block A, Boysen P, Wynne J, Hunt L (1979) Sleep apnea, hypopnea and oxygen desaturation in normal subjects. A strong male predominance. N Engl J Med 300:513–517CrossRefGoogle Scholar
  7. Boukari R, Rossignol O, Baldy C, Marcouiller F, Bairam A, Joseph V (2016) Membrane progesterone receptor-beta, but not -alpha, in dorsal brain stem establishes sex-specific chemoreflex responses and reduces apnea frequency in adult mice. J Appl Physiol 121(3):781–791.  https://doi.org/10.1152/japplphysiol.00397.2016 CrossRefPubMedGoogle Scholar
  8. Boukari R, Laouafa S, Ribon-Demars A, Bairam A, Joseph V (2017) Ovarian steroids act as respiratory stimulant and antioxidant against the causes and consequences of sleep-apnea in women. Respir Physiol Neurobiol 239:46–54.  https://doi.org/10.1016/j.resp.2017.01.013 CrossRefPubMedGoogle Scholar
  9. Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29(2):313–339.  https://doi.org/10.1016/j.yfrne.2008.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang AJ (2017) Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane. J Appl Physiol 1985:jap 00398 02017. doi: https://doi.org/10.1152/japplphysiol.00398.2017 CrossRefGoogle Scholar
  11. Charkoudian N, Hart ECJ, Barnes JN, Joyner MJ (2017) Autonomic control of body temperature and blood pressure: influences of female sex hormones. Clin Auton Res 27(3):149–155.  https://doi.org/10.1007/s10286-017-0420-z CrossRefGoogle Scholar
  12. Cruz MN, Douglas G, Gustafsson JA, Poston L, Kublickiene K (2006) Dilatory responses to estrogenic compounds in small femoral arteries of male and female estrogen receptor-beta knockout mice. Am J Physiol Heart Circ Physiol 290(2):H823–H829.  https://doi.org/10.1152/ajpheart.00815.2005 CrossRefPubMedGoogle Scholar
  13. Davis KE, Neinast MD, Sun K, Skiles WM, Bills JD, Zehr JA, Zeve D, Hahner LD, Cox DW, Gent LM, Xu Y, Wang ZV, Khan SA, Clegg DJ (2013) The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab 2(3):227–242.  https://doi.org/10.1016/j.molmet.2013.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fernandez-Aguera MC, Gao L, Gonzalez-Rodriguez P, Pintado CO, Arias-Mayenco I, Garcia-Flores P, Garcia-Perganeda A, Pascual A, Ortega-Saenz P, Lopez-Barneo J (2015) Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab 22(5):825–837.  https://doi.org/10.1016/j.cmet.2015.09.004 CrossRefPubMedGoogle Scholar
  15. Finley JC, Katz DM (1992) The central organization of carotid body afferent projections to the brainstem of the rat. Brain Res 572(1–2):108–116CrossRefGoogle Scholar
  16. Harris HA (2007) Estrogen receptor-beta: recent lessons from in vivo studies. Mol Endocrinol 21(1):1–13.  https://doi.org/10.1210/me.2005-0459 CrossRefPubMedGoogle Scholar
  17. Herbst EA, Holloway GP (2015) Permeabilization of brain tissue in situ enables multiregion analysis of mitochondrial function in a single mouse brain. J Physiol 593(4):787–801.  https://doi.org/10.1113/jphysiol.2014.285379 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Irwin RW, Yao J, To J, Hamilton RT, Cadenas E, Brinton RD (2012) Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J Neuroendocrinol 24(1):236–248.  https://doi.org/10.1111/j.1365-2826.2011.02251.x CrossRefPubMedPubMedCentralGoogle Scholar
  19. Joseph V, Doan VD, Morency CE, Lajeunesse Y, Bairam A (2006) Expression of sex-steroid receptors and steroidogenic enzymes in the carotid body of adult and newborn male rats. Brain Res 1073–1074:71–82.  https://doi.org/10.1016/j.brainres.2005.12.075 CrossRefPubMedGoogle Scholar
  20. Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, Sar M, Korach KS, Gustafsson JA, Smithies O (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci USA 95(26):15677–15682CrossRefGoogle Scholar
  21. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93(12):5925–5930CrossRefGoogle Scholar
  22. Laouafa S, Bairam A, Soliz J, Roussel D, Joseph V (2017a) Estradiol receptor agonists α and β protect against brain mitochondrial dysfunction in a model of sleep apnea. FASEB J 31(1 Supplement):696.6–696.6Google Scholar
  23. Laouafa S, Ribon-Demars A, Marcouiller F, Roussel D, Bairam A, Pialoux V, Joseph V (2017b) Estradiol protects against cardiorespiratory dysfunctions and oxidative stress in intermittent hypoxia. Sleep 40(8).  https://doi.org/10.1093/sleep/zsx104
  24. Lefter R, Doan VD, Joseph V (2008) Contrasting effects of estradiol and progesterone on respiratory pattern and hypoxic ventilatory response in newborn male rats. Respir Physiol Neurobiol 164(3):312–318.  https://doi.org/10.1016/j.resp.2008.07.026 CrossRefPubMedGoogle Scholar
  25. Marcouiller F, Boukari R, Laouafa S, Lavoie R, Joseph V (2014) The nuclear progesterone receptor reduces post-sigh apneas during sleep and increases the ventilatory response to hypercapnia in adult female mice. PLoS One 9(6):e100421.  https://doi.org/10.1371/journal.pone.0100421 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Marrocco J, McEwen BS (2016) Sex in the brain: hormones and sex differences. Dialogues Clin Neurosci 18(4):373–383PubMedPubMedCentralGoogle Scholar
  27. Matthews J, Gustafsson JA (2003) Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 3(5):281–292.  https://doi.org/10.1124/mi.3.5.281 CrossRefGoogle Scholar
  28. McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res 356(2):217–222.  https://doi.org/10.1016/j.yexcr.2017.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Micevych PE, Wong AM, Mittelman-Smith MA (2015) Estradiol membrane-initiated signaling and female reproduction. Compr Physiol 5(3):1211–1222.  https://doi.org/10.1002/cphy.c140056 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Muka T, Vargas KG, Jaspers L, Wen KX, Dhana K, Vitezova A, Nano J, Brahimaj A, Colpani V, Bano A, Kraja B, Zaciragic A, Bramer WM, van Dijk GM, Kavousi M, Franco OH (2016) Estrogen receptor beta actions in the female cardiovascular system: a systematic review of animal and human studies. Maturitas 86:28–43.  https://doi.org/10.1016/j.maturitas.2016.01.009 CrossRefPubMedGoogle Scholar
  31. Nilsen J, Brinton RD (2004) Mitochondria as therapeutic targets of estrogen action in the central nervous system. Curr Drug Targets CNS Neurol Disord 3(4):297–313CrossRefGoogle Scholar
  32. Novensa L, Novella S, Medina P, Segarra G, Castillo N, Heras M, Hermenegildo C, Dantas AP (2011) Aging negatively affects estrogens-mediated effects on nitric oxide bioavailability by shifting ERalpha/ERbeta balance in female mice. PLoS One 6(9):e25335.  https://doi.org/10.1371/journal.pone.0025335 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ohlsson C, Hellberg N, Parini P, Vidal O, Bohlooly YM, Rudling M, Lindberg MK, Warner M, Angelin B, Gustafsson JA (2000) Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice. Biochem Biophys Res Commun 278(3):640–645.  https://doi.org/10.1006/bbrc.2000.3827 CrossRefPubMedGoogle Scholar
  34. Ramirez JM (2014) The integrative role of the sigh in psychology, physiology, pathology, and neurobiology. Prog Brain Res 209:91–129.  https://doi.org/10.1016/B978-0-444-63274-6.00006-0 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Razmara A, Sunday L, Stirone C, Wang XB, Krause DN, Duckles SP, Procaccio V (2008) Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells. J Pharmacol Exp Ther 325(3):782–790.  https://doi.org/10.1124/jpet.107.134072 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Seidlova-Wuttke D, Nguyen BT, Wuttke W (2012) Long-term effects of ovariectomy on osteoporosis and obesity in estrogen-receptor-beta-deleted mice. Comp Med 62(1):8–13PubMedPubMedCentralGoogle Scholar
  37. Shughrue PJ, Merchenthaler I (2001) Distribution of estrogen receptor beta immunoreactivity in the rat central nervous system. J Comp Neurol 436(1):64–81CrossRefGoogle Scholar
  38. Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 388(4):507–525CrossRefGoogle Scholar
  39. Traupe T, Stettler CD, Li H, Haas E, Bhattacharya I, Minotti R, Barton M (2007) Distinct roles of estrogen receptors alpha and beta mediating acute vasodilation of epicardial coronary arteries. Hypertension 49(6):1364–1370.  https://doi.org/10.1161/HYPERTENSIONAHA.106.081554 CrossRefPubMedGoogle Scholar
  40. Yang SH, Liu R, Perez EJ, Wen Y, Stevens SM Jr, Valencia T, Brun-Zinkernagel AM, Prokai L, Will Y, Dykens J, Koulen P, Simpkins JW (2004) Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci USA 101(12):4130–4135.  https://doi.org/10.1073/pnas.0306948101 CrossRefPubMedGoogle Scholar
  41. Zhu Y, Bian Z, Lu P, Karas RH, Bao L, Cox D, Hodgin J, Shaul PW, Thoren P, Smithies O, Gustafsson JA, Mendelsohn ME (2002) Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta. Science 295(5554):505–508.  https://doi.org/10.1126/science.1065250 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sofien Laouafa
    • 1
    • 2
  • Damien Roussel
    • 2
  • François Marcouiller
    • 1
  • Jorge Soliz
    • 1
  • Aida Bairam
    • 1
  • Vincent Joseph
    • 1
    Email author
  1. 1.Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université LavalQuebec CityCanada
  2. 2.CNRS, UMR 5023, Université Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations