O2/CO2: Biological Detection to Homeostatic Control

  • Robert S. FitzgeraldEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1071)


Oxygen (O2) and Carbon Dioxide (CO2) are the two gases to be detected and controlled. Of interest might be a query of the evolutionary origin of each. From the cooling of the Big Bang (~13.8 Billion Years Ago [BYA]) came a quark-gluon plasma from which protons and neutrons emerged, producing H, He, Li. As H and He collapsed into the first stars at ~13.3 BYA carbon and monatomic oxygen were generated. Some 3 billion years ago greater amounts of diatomic oxygen (O2) were provided by earth’s photosynthesizing bacteria until earth’s atmosphere had sufficient amounts to sustain the life processes of multicellular animals, and finally higher vertebrates. Origin of CO2 is somewhat unclear, though it probably came from the erupting early volcanoes. Photosynthesis produced sugars with O2 a waste product. Animal life took sugars and O2 needed for life. Clearly, animal detection and control of each was critical. Many chapters involving great heroes describe phases involved in detecting each, both in the CNS and in peripheral detectors. The carotid body (CB) has played a crucial role in the detection of each. What reflex responses the stimulated CB generates, and the mechanisms as to how it does so have been a fascinating story over the last 1.5 centuries, but principally over the last 50 years. Explorations to detect these gases have proceeded from the organismal/system/ organ levels down to the sub-cell and genetic levels.


Oxygen Carbon dioxide Great oxygen event Chemoreceptors 


  1. Balbir A, Okumura M, Schofield B, Coram J, Tankersley CG, Fitzgerald RS, O’Donnell CP, Shirahata M (2006) Genetic regulation of chemoreceptor development in DBA/2J and A/J strains of mice. Adv Exp Biol Med 580:99–104CrossRefGoogle Scholar
  2. Balbir A, Lee H, Okumura M, Biswal S, Fitzgerald RS, Shirahata M (2007) A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am J PhysiolLung Cell Mol Physiol 292:L704–L715CrossRefGoogle Scholar
  3. Bisgard GE, Neubauer JA (1995) Peripheral and central effects of hypoxia. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn, Revised and Expanded. Marcel Dekker Inc, New York, pp 617–668Google Scholar
  4. Buckler KJ (2015) TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch – Eur J Physiol 467:1013–1025CrossRefGoogle Scholar
  5. Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA (2015) Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 527:240–244CrossRefGoogle Scholar
  6. De Castro F (1926) Sur la structure et l’innervation de la glande intercarotidienne (Glomus caroticum) de l’homme et des mammiferes, et sur un noveau system d’innervation autonome du nerf glossopharyngien. Trav Lab Rech Biol Univ Madrid 24:365–432Google Scholar
  7. De Castro F (1928) Sur la structure et l’innervation du sinus carotidien de l’homme et des mammiferes. Noveaux faits sur l’innervation et la fonction du glomus caroticum. Trav Lab Rech Biol Univ Madrid 25:331–380Google Scholar
  8. Dempsey J, Forster H (1982) Mediation of ventilatory adaptations. Physiol Rev 62:262–346CrossRefGoogle Scholar
  9. Fidone SJ, Gonzalez C (1986) Initiation and control of chemoreceptor activity in the carotid body. In: Handbook of physiology section 3: The respiratory system volume II control of breathing. American Physiological Society, Bethesda, pp 247–312Google Scholar
  10. Fitzgerald RS, Lahiri S (1986) Reflex responses to chemoreceptor stimulation. In: Handbook of physiology section 3: the respiratory system volume II control of breathing. American Physiological Society, Bethesda, pp 313–362Google Scholar
  11. Fredericq L (1890) Sur la circulation cephalique croisse, ou echange de sang carotidien entre deux animaux. Arch Biol 10:127–130Google Scholar
  12. Gonzalex C, Dinger B, Fidone S (1995) Mechanisms of carotid body chemoreception. In: Dempsey JA, Pack AI (eds) Regulation of Breathing, 2nd edn, Revised and Expanded. Marcel Dekker Inc, New York, pp 391–471Google Scholar
  13. Haldane JS, Priestley JG (1905) The regulation of lung-ventilation. J Physiol Lond 32:225–255CrossRefGoogle Scholar
  14. Hering HE (1923) Der Karotisdruckversuch. Münch Med Wschr 42:1267–1290Google Scholar
  15. Heymans J-F, Heymans C (1927) Sur les modificationes directes et sur la regulation reflexe de l’activite du centre respiratoire de la tete isolee du chien. Arch Int Pharmacodyn Ther 33:273–372Google Scholar
  16. Heymans C, Bouckaert J-J, Dautrebande L (1930) Role reflexogene respiratoire des zones vaso-sensibles cardio-aortique et sino-carotidiennes. Ion Hydrogene,CO2 sinus carotidiens et reflexes respiratoires. C R Soc Biol 105:881–884Google Scholar
  17. Hirasawa S, Mendoza JA, Jacoby DB, Kobayashi C, Fitzgerald RS, Schofield B, Chandrasagaran S, Shirahata M (2003) Diverse cholinergic receptors in the cat carotid body unit. Adv Exp Med Biol 536:313–319CrossRefGoogle Scholar
  18. Jacobs MH (1920) The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Am J Phys 53:457–463Google Scholar
  19. Kolobow T, Gattinoni L, Tomlinson TA, Pierce JE (1977) Control of breathing using an extracorporeal membrane lung. Anesthesiol 46:138–141CrossRefGoogle Scholar
  20. Kussmaul A, Tenner A (1857) Untersuchungen uber Ursprung und Wesen der fallsuchtartigen Zuckungen bei Verblutung sowie der Fallsucht uberhaupt. Utersuchungen zur Naturlehre Menschen Thiere 3:1–124Google Scholar
  21. Lane N (2003) OXYGEN, the molecule that made the world. Oxford University Press Inc., New YorkGoogle Scholar
  22. Leusen I (1954) Chemosensitivity of the respiratory center. Influence of CO2 in the cerebral ventricles on respiration. Am J Phys 176:39–44Google Scholar
  23. Loeschcke H, Koepchen H, Gertz K (1953) Uber den Einfluss von Wasserstoffionenkonzentration und CO2-druck im Liquor cerebrospinalis auf die Atmung. Pfluger’s Arch Gesamte Physiol 266:628–641CrossRefGoogle Scholar
  24. Lopez-Barneo J (1994) Oxygen-sensitive channels: how ubiquitous are they? Trends Neurosci 17:133–135CrossRefGoogle Scholar
  25. Meischer-Rusch F (1885) Bemerkungen zur Lehre von den Atmbewegungen. Arch Anat u Physiol, Leipzig 6:355–380Google Scholar
  26. Mitchell R, Loeschcke H, Massion W, Severinghaus J (1963) Respiratory responses mediated through superficial chemosensitive areas on the medulla. J Appl Physiol 18:523–533CrossRefGoogle Scholar
  27. Nattie EE (1995) Central chemoreception. In: Dempsey JA, Pack AI (eds) Regulation of breathing. Marcel Dekker, New York, pp 473–510Google Scholar
  28. Nattie EE, Li A (2006) Central chemoreception 2005: a brief review. Autonom Neurosc: Basic & Clin 126–127:332–338CrossRefGoogle Scholar
  29. Pagano G (1900) Sur la sensibilite du coeur et des vaisseaux sanguins. Arch Ital Biol 33:1–36Google Scholar
  30. Pappenheimer J, Fencl V, Heisey S, Held D (1965) Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am J Phys 208:436–450Google Scholar
  31. Peng YH, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. PNAS 107:10719–10724CrossRefGoogle Scholar
  32. Phillipson EA, Duffin J, Cooper JD (1981) Critical dependence of respiratory rhythmicity on metabolic CO2 load. J Appl Physiol Respirat Environ Exercise Physiol 50:45–54Google Scholar
  33. Shirahata M, Ishizawa Y, Rudisill M, Schofield B, Fitzgerald RS (1998) Presence of nicotinic acetylcholine receptors in cat carotid body afferent system. Brain Res 814:213–217CrossRefGoogle Scholar
  34. Siciliano L (1900) Les effets de la compresssion des carotides sur la pression, sur le coeur et sur la respiration. Arch Ital Biol 33:338–344Google Scholar
  35. Sullivan CE, Kozar LF, Murphy E, Phillipson EA (1978) Primary role of respiratory afferents in sustaining breathing rhythm. J Appl Physiol 45:11–17CrossRefGoogle Scholar
  36. Weil JV (2003) Variation in human ventilatory control – genetic influence on the hypoxic ventilatory response. Respir Physiol Neurobiol 135:239–246CrossRefGoogle Scholar
  37. Weil JV, Stevens T, Pickett CK, Tatsumi K, Dickinson MG, Jacoby CR, Robinson DM (1998) Strain-associated differences in hypoxic chemosensitivity of the carotid body in rats. Am J Physiol Lung Cell Mol Physiol 274:L767–L774CrossRefGoogle Scholar
  38. Winterstein H (1911) Die Regulierun der Atmung durch das Blut. Pfluger’s Arch Gesamte Physiol 138:167–184CrossRefGoogle Scholar
  39. Winterstein H (1921) Die Reaktionstheorie der Atmungsregulation. Pfluger’s Arch Gesamte Physiol 187:293–298CrossRefGoogle Scholar
  40. Yamaguchi S, Balbir A, Schofield B, Coram J, Tankersley CG, Fitzgerald RS, O’Donnell CP, Shirahata M (2006) Genetic influence on carotid body structure in DBA/2J and A/J strains of mice. Adv Exp Med Biol 580:105–109CrossRefGoogle Scholar
  41. Zhang M, Nurse CA (2004) CO2/pH chemosensory signaling in co-cultures of rat carotid body receptors and petrosal neurons: role of ATP and ACh. J Neurophysiol 92:3433–3445CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Environmental Health & Engineering, of Physiology, of MedicineThe Johns Hopkins University Medical InstitutionsBaltimoreUSA

Personalised recommendations