Skip to main content

Abstract

In this work we develop and present automatic and semi-automatic user-guided methods and algorithms for patient-specific image segmentation and generation of discrete geometric models for several cardiovascular biomedical applications. A new technique for dynamic heart ventricles segmentation and mesh generation using dynamic contrast enhanced Computed Tomography images is presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.K. Zarins, C.A. Taylor, J.K. Min, J. Cardiovasc. Transl. Res. 6, 708 (2013)

    Article  Google Scholar 

  2. P.D. Morris, D. Ryan, A.C. Morton et al., JACC: Cardiovasc. Interv. 6, 149 (2013)

    Google Scholar 

  3. G. Lines, M. Buist, P. Grottum et al., Comput. Visual. Sci. 5, 215 (2002)

    Article  Google Scholar 

  4. M. Holtzman-Gazit, R. Kimmel, N. Peled, D. Goldsher, IEEE Trans. Image Process. 15, 354 (2006)

    Article  Google Scholar 

  5. A.G. Radaelli, J. Peiró, Int. J. Numer. Methods Biomed. Eng. 26, 3 (2010)

    Article  Google Scholar 

  6. S.Y. Yeo, X. Xie, I. Sazonov, P. Nithiarasu, Int. J. Numer. Methods Biomed. Eng. 30, 232 (2014)

    Article  MathSciNet  Google Scholar 

  7. A.A. Danilov, D.V. Nikolaev, S.G. Rudnev et al., Russ. J. Numer. Anal. Math. Model. 27, 431 (2012)

    Article  Google Scholar 

  8. Y.V. Vassilevski, A.A. Danilov, T.M. Gamilov et al., Russ. J. Numer. Anal. Math. Model. 30, 185 (2015)

    Article  Google Scholar 

  9. A. Danilov, Y. Ivanov, R. Pryamonosov, Y. Vassilevski, Int. J. Numer. Methods Biomed. Eng. 32, e02754 (2016)

    Article  Google Scholar 

  10. A. Danilov, R. Pryamonosov, A. Yurova, Computation 4, 35 (2016)

    Article  Google Scholar 

  11. L. Grady, Computer Vision – ECCV 2006 (2006), p. 449

    Google Scholar 

  12. A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever, Medical Image Computing and Computer-Assisted Interventation – MICCAI’98 (1998), p. 130

    Google Scholar 

  13. A.A. Danilov, R.A. Pryamonosov, A.S. Yurova, ECCOMAS Congress 2016, vol. 1 (2016), p. 454

    Google Scholar 

  14. A. Buades, B. Coll, J.M. Morel, Multiscale Model. Simul. 4, 490 (2005)

    Article  MathSciNet  Google Scholar 

  15. P.A. Yushkevich, J. Piven, H.C. Hazlett et al., Neuroimage 31, 1116 (2006)

    Article  Google Scholar 

  16. L. Rineau, M. Yvinec, Comput. Geom. 38, 100 (2007)

    Article  MathSciNet  Google Scholar 

  17. J.M. Escobar, E. Rodríguez, R. Montenegro et al., Comput. Methods Appl. Mech. Eng. 192, 2775 (2003)

    Article  Google Scholar 

  18. J.M. Escobar, E. Rodríguez, R. Montenegro et al., SUS code: simultaneous mesh untangling and smoothing code (2010). http://www.dca.iusiani.ulpgc.es/SUScode

  19. R.M. Haralick, K. Shanmugam, I. Dinstein, IEEE Trans. Syst. Man Cybern. 3, 610 (1973)

    Article  Google Scholar 

  20. P. Marquez-Neila, L. Baumela, L. Alvarez, IEEE Trans. Pattern Anal. Mach. Intell. 36, 2 (2014)

    Article  Google Scholar 

  21. J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  22. TeraRecon, CT Body Advanced Visualization Package. http://www.terarecon.com/advanced-visualization/ct-body

Download references

Acknowledgements

This work has been supported by the Russian Science Foundation (RSF) grant 14-31-00024.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danilov, A.A., Pryamonosov, R.A., Yurova, A.S. (2018). Segmentation Techniques for Cardiovascular Modeling. In: Mondaini, R. (eds) Trends in Biomathematics: Modeling, Optimization and Computational Problems. Springer, Cham. https://doi.org/10.1007/978-3-319-91092-5_4

Download citation

Publish with us

Policies and ethics