Skip to main content

Abstract

Blood flow simulations can be improved by integrating known data into the numerical modeling approach. Data Assimilation techniques based on a variational formulation play an important role in this issue. We propose a non-linear optimal control problem to reconstruct the blood flow profile from partial observations of known data in different geometries. Blood flow is assumed to behave as a homogeneous fluid with non-Newtonian inelastic shear-thinning behavior or, to simplify, blood flow is governed by the Navier-Stokes equations. Using a Discretize then Optimize (DO) approach, we solve a non-linear optimal control problem and present numerical results that indicate its robustness with respect to different idealized geometries and measured data. Blood flow in real vessels will also be considered, including the discussion of particular clinical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Wang, X. Zou, J. Zhu, Data assimilation and its applications. Proc. Natl. Acad. Sci. USA 97(21), 11143–11144 (2000)

    Article  Google Scholar 

  2. M. D’Elia, A. Veneziani, Methods for assimilating blood velocity measures in hemodynamics simulations: preliminary results. Procedia Comput. Sci. 1(1), 1225–1233 (2010)

    Article  Google Scholar 

  3. T. Guerra, J. Tiago, A. Sequeira, Optimal control in blood flow simulations. Int. J. Non Linear Mech. 64, 57–69 (2014)

    Article  Google Scholar 

  4. L. Bertagna, A. Veneziani, A model reduction approach for the variational estimation of vascular compliance by solving an inverse fluid-structure interaction problem. Inverse Prob. 30(5), 055006 (2014)

    Google Scholar 

  5. S. Pant, B. Fabreges, J.F. Gerbeau, I.E. Vignon-Clementel, A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis. Int. J. Numer. Methods Biomed. Eng. 30(12), 1614–1648 (2014)

    Article  Google Scholar 

  6. A. Marsden, Optimization in cardiovascular modeling. Annu. Rev. Fluid Mech. 46, 519–546 (2014)

    Article  MathSciNet  Google Scholar 

  7. J. Tiago, A. Gambaruto, A. Sequeira, Patient-specific blood flow simulations: setting Dirichlet boundary conditions for minimal error with respect to measured data. Math. Models Nat. Phenom. 9(6), 98–116 (2014)

    Article  MathSciNet  Google Scholar 

  8. J.T. Betts, S.L. Campbell, Discretize then optimize. Technical Document Series, & CT-TECH-03–01. Mathematics and Computing Technology, Phantom Works, Boeing, Seattle, 2003

    Google Scholar 

  9. M. Hinze, F. Tröltzsch, Discrete concepts versus error analysis in PDE-constrained optimization. GAMM-Mitt. 33(2), 148–162 (2010)

    Article  MathSciNet  Google Scholar 

  10. J. Burkardt, M. Gunzburger, J. Peterson, Insensitive functionals, inconsistent gradients, spurious minima and regularized functionals in flow optimization problems. Int. J. Comput. Fluid Dyn. 16(3), 171–185 (2002)

    Article  MathSciNet  Google Scholar 

  11. M. Gunzburger, Perspectives in Flow Control and Optimization (SIAM, Philadelphia, 2003)

    MATH  Google Scholar 

  12. S. Collis, M. Heinkenschloss, Analysis of the streamline upwind/petrov galerkin method applied to the solution of optimal control problems. Tech. Rep. TR02-01. DCAM Rice University, Houston, 2002

    Google Scholar 

  13. M. Heinkenschloss, D. Leykekhman, Local error estimates for SUPG solutions of advection-dominated elliptic linear-quadratic optimal control problems. SIAM J. Numer. Anal. 47(6), 4607–4638 (2010)

    Article  MathSciNet  Google Scholar 

  14. M. Gunzburger, S. Manservisi, The velocity tracking problem for Navier-Stokes flows with boundary control. SIAM J. Control Optim. 39, 594–634 (2000)

    Article  MathSciNet  Google Scholar 

  15. K. Deckelnick, M. Hinze, Semidiscretization and error estimates for distributed control of the instationary Navier-Stokes equations. Numer. Math. 97(2), 297–320 (2004)

    Article  MathSciNet  Google Scholar 

  16. J. Tiago, T. Guerra, A. Sequeira, A velocity tracking approach for the data assimilation problem in blood flow simulations. Int. J. Numer. Methods Biomed. Eng. (2017). https://doi.org/10.1002/cnm.2856

    Google Scholar 

  17. P. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algoritm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MathSciNet  Google Scholar 

  18. A.M. Robertson, A. Sequeira, M. Kameneva, Hemorheology, in Hemodynamical Flows: Modeling, Analysis and Simulation, vol. 37 (Birkhäuser Verlag, Basel, 2008), pp. 63–120

    Google Scholar 

  19. M. D’Elia, A. Veneziani, Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem. ESAIM: Math. Model. Numer. Anal. 47(4), 1037–1057 (2013)

    Article  MathSciNet  Google Scholar 

  20. N. Arada, Optimal control of shear-thinning fluids. SIAM J. Control Optim. 40(4), 2515–2542 (2012)

    Article  MathSciNet  Google Scholar 

  21. T. Guerra, Distributed control for shear-thinning non-Newtonian fluids. J. Math. Fluid Mech. 14(4), 771–789 (2012)

    Article  MathSciNet  Google Scholar 

  22. T. Guerra, A. Sequeira, J. Tiago, Existence of optimal boundary control for Navier-Stokes with mixed boundary conditions. Port. Math. 72(2–3), 267–283 (2015)

    Article  MathSciNet  Google Scholar 

  23. J. Baranger, K. Najib, Analyse numérique des écoulements quasi-Newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau. Numer. Math. 58, 35–49 (1990)

    Article  MathSciNet  Google Scholar 

  24. J.W. Barrett, S.W. Liu, Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law. Numer. Math. 64(1), 433–453 (1993)

    Article  MathSciNet  Google Scholar 

  25. A. Brooks, T.H.J. Hughes, Streamline upwind/petrov-galerkin formulations for a convection dominated flows with a particular emphasis on the incompressible navier-stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  26. Y. Bazilevs, V. Calo, T. Tezduyar, T. Hughes, YZβ discontinuity capturing for advection-dominated processes with application to arterial drug delivery. Int. J. Numer. Meth. Fluids 54, 593–608 (2007)

    Article  MathSciNet  Google Scholar 

  27. F. Shakib, T. Hughes, K.J. Zden\(\check {\mathrm{e}}\), A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 89, 141–219 (1991)

    Google Scholar 

  28. P. Gill, W. Murray, M.A. Saunders, User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming (2008)

    Google Scholar 

  29. P. Deuflhard, A modified newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22, 289–315 (1974)

    Article  MathSciNet  Google Scholar 

  30. K. Ito, K. Kunisch, On the choice of the regularization parameter in nonlinear inverse problems. SIAM J. Optim. 2(3), 376–404 (1992)

    Article  MathSciNet  Google Scholar 

  31. M. D’Elia, A. Perego, A. Veneziani, A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics. J. Sci. Comput. 52(2), 340–359 (2011)

    Article  MathSciNet  Google Scholar 

  32. A. Gambaruto, J. Janela, A. Moura, A. Sequeira, Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Math. Biosci. Eng. 8(2), 409–423 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by FCT—Fundação para a Ciência e a Tecnologia through the project UID/Multi/04621/2013 of the CEMAT—Center for Computational and Stochastic Mathematics, IST, ULisboa—Portugal, project EXCL/MAT-NAN/0114/2012, and the grant SFRH/BPD/109574/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adélia Sequeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sequeira, A., Tiago, J., Guerra, T. (2018). Boundary Control Problems in Hemodynamics. In: Mondaini, R. (eds) Trends in Biomathematics: Modeling, Optimization and Computational Problems. Springer, Cham. https://doi.org/10.1007/978-3-319-91092-5_3

Download citation

Publish with us

Policies and ethics