Skip to main content

Nanosized Oxides of Different Compositions as Adsorbents for Hazardous Substances Removal from Aqueous Solutions and Wastewaters

  • Conference paper
  • First Online:
Nanooptics, Nanophotonics, Nanostructures, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 210))

Included in the following conference series:

Abstract

Adsorption methods are considered to be highly effective in the industrial effluents treatment technologies. Preparation of cheap and selective adsorbents with significant sorption capacity is a serious challenge for scientists. Nanosized mixed oxides have been successfully used for removal of environmental contaminations from aqueous streams. Taking into account the morphological and microstructural properties of the nanosized oxides, mechanical strength and non-toxicity in many cases, these materials are popular. The literature review concerning removal of metal ions, dyes and polymers using nanosized single and mixed oxides was made. The adsorption parameters which affect removal efficiency, i.e. concentration, phase contact time as well as equilibrium and thermodynamic aspects, were taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubbard AT (ed) (2002) Encyclopedia of surface and colloid science. Dekker, New York

    Google Scholar 

  2. Bergna HE (ed) (2005) Colloidal silica: fundamentals and applications. Taylor & Francis, Salisbury

    Google Scholar 

  3. Shpak AP, Gorbik PP (eds) (2010) Nanomaterials and supramolecular structures. Springer, Dordrecht

    Google Scholar 

  4. Blitz JP, Gun’ko VM (eds) (2006) Surface chemistry in biomedical and environmental science, NATO science series II: mathematics, physics and chemistry, vol 228. Springer, Dordrecht

    Google Scholar 

  5. Wiśniewska M, Nowicki P, Bogatyrov VM, Nosal-Wiercińska A, Pietrzak R (2016) Comparison of adsorption properties of MgxOy–SiO2 and ZnxOy–SiO2 in the mixed oxide-poly(vinyl alcohol) system. Colloids Surf A Physicochem Eng Asp 492:12–18

    Article  Google Scholar 

  6. Wiśniewska M, Bogatyrov V, Szewczuk-Karpisz K, Ostolska I, Terpiłowski K (2015) Adsorption mechanism of poly(vinyl alcohol) at the mixed oxide CuxOy-SiO2/aqueous solution interface. Appl Surf Sci 356:905–910

    Article  ADS  Google Scholar 

  7. Klonos P, Pissis P, Gun’ko V, Kyritsisa A, Guzenko V, Pakhlov E, Zarko V, Janusz W, Skubiszewska-Zięba J, Leboda R (2010) Interaction of poly(ethylene glycol) with fumed silica and alumina/silica/titania. Colloids Surf A Physicochem Eng Asp 360(1–3):220–231

    Article  Google Scholar 

  8. Voronin EF, Gun’ko VM, Guzenko NV, Pakhlov EM, Chuiko AA (2004) Interaction of poly(ethylene oxide) with fumed silica. J Colloid Interface Sci 279(2):326–340

    Article  ADS  Google Scholar 

  9. Gun’ko VM, Zarko VI, Mironyuk IF, Goncharuk EV, Guzenko NV, Borysenko MV, Gorbik PP, Mishchuk OA, Janusz W, Leboda R, Skubiszewska-Zięba J, Grzegorczyk W, Matysek M, Chibowski S (2004) Surface electric and titration behaviour of fumed oxides. Colloids Surf A Physicochem Eng Asp 240(1–3):9–25

    Article  Google Scholar 

  10. Wawrzkiewicz M, Wiśniewska M, Wołowicz A, Gun’ko VM, Zarko VI (2017) Mixed silica-alumina oxide as sorbent for dyes and metal ions removal from aqueous solutions and wastewaters. Micro Meso Mater 250:128–147

    Article  Google Scholar 

  11. Wawrzkiewicz M, Wiśniewska M, Gun’ko VM, Zarko VI (2015) Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewaters using mixed silica-alumina oxide. Powder Technol 278:306–315

    Article  Google Scholar 

  12. Gun’ko VM, Yurchenko GR, Turov VV, Goncharuk EV, Zarko VI, Zabuga AG, Matkovsky AK, Oranska OI, Leboda R, Skubiszewska-Zięba J, Janusz W, Phillips GJ, Mikhalovsky SV (2010) Adsorption of polar and nonpolar compounds onto complex nanooxides with silica, alumina, and titania. J Colloid Interface Sci 348(2):546–558

    Article  ADS  Google Scholar 

  13. Di G, Zhu Z, Zhang H, Zhu J, Lu H, Zhang W, Qiu Y, Zhu L, Küppers S (2017) Simultaneous removal of several pharmaceuticals and arsenic on Zn-Fe mixed metal oxides: combination of photocatalysis and adsorption. Chem Eng J 328:141–151

    Article  Google Scholar 

  14. Gao L, Li Q, Hu X, Wang X, Song H, Yan L, Xiao H (2016) One-pot synthesis of biomorphic Mg-Al mixed metal oxides with enhanced methyl orange adsorption properties. Appl Clay Sci 126:299–305

    Article  Google Scholar 

  15. Lei C, Zhu X, Zhu B, Yu J, Ho W (2016) Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water. J Colloid Interface Sci 466:238–246

    Article  ADS  Google Scholar 

  16. Skwarek E, Matysek–Nawrocka M, Janusz W, Zarko VI, Gun’ko VM (2008) Adsorption of heavy metal ions at the Al2O3-SiO2/NaClO4 electrolyte interface. Physicochem Probl Miner Process 42:153–164

    Google Scholar 

  17. Gun’ko VM, Nychiporuk YM, Zarko VI, Goncharuk EV, Mishchuk OA, Leboda R, Skubiszewska-Zieba J, Skwarek E, Janusz W, Yurchenko GR, Osovskii VD, Ptushinskii YG, Turov VV, Gorbik PP, Blitz JP, Gude K (2007) Relationships between surface compositions and properties of surfaces of mixed fumed oxides. Appl Surf Sci 253(6):3215–3230

    Article  ADS  Google Scholar 

  18. Gun’ko VM, Zarko VI, Leboda R, Chibowski E (2001) Aqueous suspension of fumed oxides: particle size distribution and zeta potential. Adv Colloid Interface Sci 91:1–112

    Article  Google Scholar 

  19. Gun’ko VM, Pakhlov EM, Skubiszewska-Zięba J, Blitz JP (2017) Infrared spectroscopy as a tool for textural and structural characterization of individual and complex fumed oxides. Vib Spectrosc 88:56–62

    Article  Google Scholar 

  20. Gun’ko VM, Zarko VI, Leboda R, Marciniak M, Janusz W, Chibowski S (2000) Highly dispersed X/SiO2 and C/X/SiO2 (X=alumina, titania, alumina/titania) in the gas and liquid media. J Colloid Interface Sci 230(2):396–409

    Article  ADS  Google Scholar 

  21. Sulym I, Sternik D, Oleksenko L, Lutsenko L, Borysenko M, Deryło-Marczewska A (2016) Highly dispersed silica-supported ceria–zirconia nanocomposites: preparation and characterization. Surf Interface 5:8–14

    Article  Google Scholar 

  22. Gun’ko VM, Blitz JP, Bandaranayake B, Pakhlov EM, Zarko VI, Ya SI, Kulyk KS, Galaburda MV, Bogatyrev VM, Oranska OI, Borysenko MV, Leboda R, Skubiszewska-Zięba J, Janusz W (2012) Structural characteristics of mixed oxides MOx/SiO2 affecting photocatalytic decomposition of methylene blue. Appl Surf Sci 258:6288–6296

    Article  ADS  Google Scholar 

  23. Reddy BM, Thrimurthulu G, Saikia P, Bharali P (2007) Silica supported ceria and ceria–zirconia nanocomposite oxides for selective dehydration of 4-methylpentan-2-ol. J Mol Catal A Chem 275:167–173

    Article  Google Scholar 

  24. Reddy BM, Saikia P, Bharali P, Katta L, Thrimurthulu G (2009) Highly dispersed ceria and ceria–zirconia nanocomposites over silica surface for catalyticapplications. Catal Today 141:109–114

    Article  Google Scholar 

  25. Navío JA, Colón G, Macías M, Sánchez-Soto PJ, Augugliaro V, Palmisano L (1996) ZrO2–SiO2 mixed oxides: surface aspects, photophysical properties andphotoreactivity for 4-nitrophenol oxidation in aqueous phase. J Mol Catal A Chem 109:239–248

    Article  Google Scholar 

  26. Gao X, Fierro JLG, Wachs IE (1999) Structural characteristics and catalytic properties of highly dispersed ZrO2/SiO2 and V2O5/ZrO2/SiO2 catalysts. Langmuir 15:3169–3178

    Article  Google Scholar 

  27. Basic characteristics of aerosil, Technical bulletin pigments, no. 11, Degussa AG, Hanau, 1997

    Google Scholar 

  28. https://www.wacker.com/cms/en/products/brands_2/hdk/hdk.jsp

  29. https://www.aerosil.com/sites/lists/RE/DocumentsSI/Technical-Overview-AEROSIL-Fumed-Silica-EN.pdf

  30. Pierson HO (1999) Handbook of chemical vapor deposition: principles, technology and applications. Noyes Publications, New York

    Google Scholar 

  31. Voronin EF, Pakhlo EM, Chuiko AA (1995) Chemisorption and hydrolysis of TiCl4 on the surface of pyrogenic silica. Colloids Surf A Physicochem Eng Asp 101(2–3):123–127

    Article  Google Scholar 

  32. Gun’ko VM, Zarko VI, Turov VV, Leboda R, Chibowski E, Holysz L, Pakhlov EM, Voronin EF, Dudnik VV, Gornikov YI (1998) CVD-titania on fumed silica substrate. J Colloid Interface Sci 198(1):141–156

    Article  ADS  Google Scholar 

  33. Sulym I, Goncharuk O, Skwarek E, Sternik D, Borysenko MV, Derylo-Marczewska A, Janusz W, Gun’ko VM (2015) Silica-supported ceria–zirconia and titania–zirconia nanocomposites: structural characteristics and electrosurface properties. Colloids Surf A Physicochem Eng Asp 482:631–638

    Article  Google Scholar 

  34. Sulym IY, Goncharuk O, Sternik D, Skwarek E, Derylo-Marczewska A, Janusz W, Gun’ko VM (2016) Silica-supported Titania–zirconia nanocomposites: structural and morphological characteristics in different media. Nanoscale Res Lett 11:111. https://doi.org/10.1186/s11671-016-1304-1

    Article  ADS  Google Scholar 

  35. Sulim IY, Borysenko MV, Korduban OM, Gun’ko VM (2009) Influence of silica matrix morphology on characteristics of grafted nanozirconia. Appl Surf Sci 255:7818–7824

    Article  ADS  Google Scholar 

  36. Bogatyrev VM, Gun’ko VM, Galaburda MV, Borysenko MV, Pokrovsky VA, Oranska OI, Polshin EV, Korduban OM, Leboda R, Skubiszewska-Zieba J (2009) Synthesis and characterization of Fe2O3/SiO2 nanocomposites. J Colloid Interface Sci 338:376–388

    Article  ADS  Google Scholar 

  37. Gun’ko VM, Bogatyrev VM, Borysenko MV, Galaburda MV, Sulim IY, Petrus LV, Korduban OM, Polshin EV, Zaulychnyy YV, Karpets MV, Foya OO, Myronyuk IF, Chelyadyn VL, UYa D, Leboda R, Skubiszewska-Zieba J, Blitz JP (2010) Morphological, structural and adsorption features of oxide composites with silica and titania matrices. Appl Surf Sci 256:5263–5269

    Article  ADS  Google Scholar 

  38. Singh LP, Bhattacharyya SK, Ahalawat S, Kumar R, Mishra G, Sharma U, Singh G (2014) Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 214:17–37

    Article  Google Scholar 

  39. Al Abdullah K, Awad S, Zaraket J, Salame C (2017) Synthesis of ZnO nanopowders by using sol-gel and studying their structural and electrical properties at different temperature. Energy Procedia 119:565–570

    Article  Google Scholar 

  40. Imran M, Riaz S, Naseem S (2015) Synthesis and characterization of titania nanoparticles by sol-gel technique. Mater Today Proc 2(10):5455–5461

    Article  Google Scholar 

  41. Harraz FA, Abdel-Salam OE, Mostafa AA, Mohamed RM, Hanafy M (2013) Rapid synthesis of titania–silica nanoparticles photocatalyst by a modified sol–gel method for cyanide degradation and heavy metals removal. J Alloys Compd 551:1–7

    Article  Google Scholar 

  42. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    Google Scholar 

  43. Sharma K, Agrwal M (2005) Biological effects of heavy metals: an overview. J Environ BioI 26(2 suppl):301–313

    Google Scholar 

  44. Lakherwal D (2014) Adsorption of heavy metals: a review. Intern J Environ Res Develop 4(1):41–48

    Google Scholar 

  45. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  Google Scholar 

  46. Agarwal SK (2009) Heavy metal pollution. APH Publishing Corporation, New Delhi

    Google Scholar 

  47. Lim AP, Aris AZ (2014) A review on economically adsorbents on heavy metals removal in water and wastewater. Rev Environ Sci Biotechnol 13:163–181

    Article  ADS  Google Scholar 

  48. Da’na E (2017) Adsorption of heavy metals on functionalized-mesoporous silica: a review. Micro Meso Mater 247:145–157

    Article  Google Scholar 

  49. Bakhiyi B, Gravel S, Ceballos D, Flynn MA, Zayed J (2018) Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges. Environ Int 110:173–192

    Article  Google Scholar 

  50. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  51. Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  Google Scholar 

  52. O’Connell DW, Birkinshaw V, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  Google Scholar 

  53. Aderhold D, Williams CJ, Edyvean RGJ (1996) The removal of heavy metal ions by seaweeds and their derivatives. Bioresour Technol 58(1):1–6

    Article  Google Scholar 

  54. Fan M, Boonfueng T, Xu Y, Axe L, Tyson TA (2005) Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. J Colloid Interface Sci 281:39–48

    Article  ADS  Google Scholar 

  55. Hu J, Chen GH, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536

    Article  Google Scholar 

  56. Martynyuk O, Kotolevich Y, Pestryakov A, Mota-Morales JD, Bogdanchikova N (2015) Nanostructures constituted by unusually small silica nanoparticles modified with metal oxides as support for ultra-small gold nanoparticles. Colloids Surf A Physicochem Eng Asp 487:9–16

    Article  Google Scholar 

  57. Chen YH, Li FA (2010) Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J Colloid Interface Sci 347:277–281

    Article  ADS  Google Scholar 

  58. Hu J, Chen G, Lo IMC (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng-ASCE 132:709–715

    Article  Google Scholar 

  59. Swallow KC, Hume DN, Morel FMM (1980) Sorption of copper and lead by hydrous ferric-oxide. Environ Sci Technol 14:1326–1331

    Article  ADS  Google Scholar 

  60. Trivedi P, Dyer JA, Sparks DL (2003) Lead sorption onto ferrihydrite. 1. A macroscopic and spectroscopic assessment. Environ Sci Technol 37:908–914

    Article  ADS  Google Scholar 

  61. Mishra SP, Vijaya (2007) Removal behavior of hydrous manganese oxide and hydrous stannic oxide for Cs (I) ions from aqueous solutions. Sep Purif Technol 54:10–17

    Article  Google Scholar 

  62. Mishra SP, Dubey SS, Tiwari D (2004) Rapid and efficient removal of hg (II) by hydrous manganese and tin oxides. J Colloid Interface Sci 279:61–67

    ADS  Google Scholar 

  63. Takamatsu T, Kawashima M, Koyama M (1985) The role of Mn2+-rich hydrous manganese oxide in the accumulation of arsenic in lake-sediments. Water Res 19:1029–1032

    Article  Google Scholar 

  64. Tripathy SS, Bersillon JL, Gopal K (2006) Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination 194:11–21

    Article  Google Scholar 

  65. Misono M, Ochiai EI, Saito Y, Yoneda Y (1967) A new dual parameter scale for strength of Lewis acids and bases with evaluation of their softness. J Inorg Nucl Chem 29:2685–2691

    Article  Google Scholar 

  66. Dyer A, Pillinger M, Newton J, Harjula R, Moller T, Amin S (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chem Mater 12:3798–3804

    Article  Google Scholar 

  67. Tsuji M, Komarneni S (1993) Selective exchange of divalent transition-metal ions in cryptomelane-type manganic acid with tunnel structure. J Mater Res 8:611–616

    Article  ADS  Google Scholar 

  68. Ghaedi M, Niknam K, Shokrollahi A, Niknam E, Rajabi HR, Soylak M (2008) Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina. J Hazard Mater 155:121–127

    Article  Google Scholar 

  69. Dadfarnia S, Shabani AMH, Shirie HD (2002) Determination of lead in different samples by atomic absorption spectrometry after preconcentration with dithizone immobilized on surfactant-coated alumina. Bull Kor Chem Soc 23:545–548

    Article  Google Scholar 

  70. Shabani AMH, Dadfarnia S, Dehghani Z (2009) On-line solid phase extraction system using 1,10-phenanthroline immobilized on surfactant coated alumina for the flame atomic absorption spectrometric determination of copper and cadmium. Talanta 79:1066–1070

    Article  Google Scholar 

  71. Afkhami A, Saber-Tehrani M, Bagheri H (2010) Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater 181:836–844

    Article  Google Scholar 

  72. Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18:386–395

    Article  Google Scholar 

  73. Liang P, Shi T, Li J (2004) Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Int J Environ Anal Chem 84:315–321

    Article  Google Scholar 

  74. Mahdavi S, Jalali M, Afkhami A (2013) Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem Eng Commun 200:448–470

    Article  Google Scholar 

  75. Wang XB, Cai WP, Lin YX, Wang GZ, Liang CH (2010) Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J Mater Chem 20:8582–8590

    Article  Google Scholar 

  76. Ma XF, Wang YQ, Gao MJ, Xu HZ, Li GA (2010) A novel strategy to prepare ZnO/PbS heterostructured functional nanocomposite utilizing the surface adsorption property of ZnO nanosheets. Catal Today 158:459–463

    Article  Google Scholar 

  77. Mahdavi S, Jalali M, Afkhami A (2012) Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticle. J Nanopart Res 14:846

    Article  Google Scholar 

  78. Gao CL, Zhang WL, Li HB, Lang LM, Xu Z (2008) Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst Growth Des 8:3785–3790

    Article  Google Scholar 

  79. Zhang F, Jin Q, Chan SW (2004) Ceria nanoparticles: size, size distribution, and shape. Jpn J Appl Phys 95:4319–4326

    Article  Google Scholar 

  80. Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Larese C, Omil JAP, Pintado JM (1999) Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal Today 50:175–206

    Article  Google Scholar 

  81. Contreras AR, Casals E, Puntes V, Komilis D, Sánches A, Font X (2015) Use of cerium oxide nanoparticles for the adsorption of dissolved cadmium(II), lead(II) and chromium(VI) at two different pHs in single and multi-component systems. Global NEST J 17:536–543

    Article  Google Scholar 

  82. Eren E (2009) Removal of lead ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. J Hazard Mater 165:63–70

    Article  Google Scholar 

  83. Eren E, Tabak A, Eren B (2010) Performance of magnesium oxide-coated bentonite in removal process of copper ions from aqueous solution. Desalination 257:163–169

    Article  Google Scholar 

  84. Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179

    Article  Google Scholar 

  85. Oliveira LCA, Petkowicz DI, Smaniotto A, Pergher SBC (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38:3699–3704

    Article  Google Scholar 

  86. Shin S, Jjang J (2007) Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem Commun 41:4230–4232

    Article  Google Scholar 

  87. Pereira L, Alves M (2015) Dyes – environmental impact and remediation. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development, strategies for sustainability. Springer, Dordrecht/Heidelberg/London/New York, pp 111–162

    Google Scholar 

  88. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal – a review. J Environ Manag 90(8):2313–2342

    Article  Google Scholar 

  89. Elwakeel KZ (2009) Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins. J Hazard Mater 167(1):383–392

    Article  Google Scholar 

  90. Padmavathy S, Sandhya S, Swaminathan K, Subrahmanyam YV, Chakrabarti T, Kaul SN (2003) Aerobic decolorization of reactive azo dyes in presence of various cosubstrates. Chem Biochem Eng Q 17(2):147–151

    Google Scholar 

  91. Kumar Pandey A, Dubey V (2012) Biodegradation of azo dye reactive red BL by Alcaligenes sp. AA09. Int J Eng Sci 1(12):54–60

    Google Scholar 

  92. Dotto GL, Vieira MLG, Esquerdo VM, Pinto LAA (2013) Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis. Braz J Chem Eng 30(1):13–21

    Article  Google Scholar 

  93. Saranraj P (2013) Bacterial biodegradation and decolourization of toxic textile azo dyes. Afr J Microbiol Res 7(30):3885–3890

    Google Scholar 

  94. Ciesielczyk F, Bartczak P, Zdarta J, Jesionowski T (2017) Active MgO-SiO2 hybrid material for organic dye removal: a mechanism and interaction study of the adsorption of C.I. Acid blue 29 and C.I. Basic blue 9. J Environ Manag 204:123–135

    Article  Google Scholar 

  95. Pal U, Sandoval A, Madrid SIU, Corro G, Sharma V, Mohanty P (2016) Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution. Chemosphere 163:142–152

    Article  ADS  Google Scholar 

  96. Rasalingam S, Peng R, Koodali RT (2013) An investigation into the effect of porosities on the adsorption of rhodamine B using titania-silica mixed oxide xerogels. J Environ Manag 128:530–539

    Article  Google Scholar 

  97. Tanzifi M, Yaraki MT, Kiadehi AD, Hosseini SH, Olazar M, Bharti AK, Agarwal S, Gupta VK, Kazemi A (2018) Adsorption of Amido black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: experimental investigation and artificial neural network modeling. J Colloid Interface Sci 510:246–261

    Article  ADS  Google Scholar 

  98. Arshadia M, Vahid FS, Salvacion JWL, Soleymanzadeh M (2013) A practical organometallic decorated nano-size SiO2-Al2O3 mixed-oxides for methyl orange removal from aqueous solution. Appl Surf Sci 280:726–736

    Article  ADS  Google Scholar 

  99. Wawrzkiewicz M, Wiśniewska M, Gun’ko VM (2017) Application of silica–alumina oxides of different compositions for removal of C.I. Reactive black 5 dye from wastewaters. Ads Sci Technol 35(5–6):448–457

    Article  Google Scholar 

  100. Abdelaal MY, Makki MSI, Sobahi TRA (2012) Modification and characterization of polyacrylic acid for metal ion recovery. Am J Polym Sci 2:73–78

    Article  Google Scholar 

  101. Zheng H, Ma J, Ji F, Tang X, Chen W, Zhu J, Liao Y, Tan M (2013) Synthesis and application of anionic polyacrylamide in water treatment. Asian J Chem 25:7071–7074

    Google Scholar 

  102. Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Develop Drugs 2:3

    Article  Google Scholar 

  103. Wiśniewska M, Bogatyrov V, Ostolska I, Szewczuk-Karpisz K, Terpiłowski K, Nosal-Wiercińska A (2016) Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide MnxOy - SiO2. Adsorption 22:417–423

    Article  Google Scholar 

  104. Bogatyrov VM, Oranska IO, Gun’ko VM, Leboda R, Skubiszewska-Zięba J (2011) Influence of metal content on structural characteristics of inorganic nanocomposities MxOy/SiO2 and C/MxOy/SiO2. Chem Phys Tech Surf 2:135–146

    Google Scholar 

  105. Wiśniewska M, Ostolska I, Szewczuk-Karpisz K, Chibowski S, Terpiłowski K, Zarko VI, Gun’ko VM (2015) Investigation of the polyvinyl alcohol stabilization mechanism and adsorption properties on the surface of ternary mixed nanooxide AST (Al2O3-SiO2-TiO2). J Nanopart Res 17:12

    Article  Google Scholar 

  106. Wiśniewska M, Szewczuk-Karpisz K, Ostolska I, Urban T, Terpiłowski K, Zarko VI, Gun’ko VM (2015) Effect of polyvinyl alcohol adsorption on the mixed alumina-silica-titania suspension stability. J Ind Eng Chem 23:265–272

    Article  Google Scholar 

  107. Wiśniewska M, Chibowski S, Urban T (2015) Impact of polyacrylamide with different contents of carboxyl groups on the chromium(III) oxide adsorption properties in aqueous solution. J Hazard Mater 283:815–823

    Article  Google Scholar 

  108. Wiśniewska M, Urban T, Grządka E, Zarko VI, Gun’ko VM (2014) Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica-alumina. Colloid Polym Sci 292:699–705

    Article  Google Scholar 

  109. Kasprzyk-Hordern B (2004) Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv J Colloid Interface Sci 110:19–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Wiśniewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wiśniewska, M., Wawrzkiewicz, M., Wołowicz, A., Goncharuk, O. (2018). Nanosized Oxides of Different Compositions as Adsorbents for Hazardous Substances Removal from Aqueous Solutions and Wastewaters. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-91083-3_8

Download citation

Publish with us

Policies and ethics