Skip to main content

Sintering Methods of Inkjet-Printed Silver Nanoparticle Layers

  • Conference paper
  • First Online:
Nanooptics, Nanophotonics, Nanostructures, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 210))

Included in the following conference series:

Abstract

The technologies of printed electronics have a huge potential to replace some of the technologies of traditional microelectronics, production of printed circuit boards, optoelectronic devices and provide the opportunity to massive and low-cost production with completely new qualities. There is also a growing interest in producing flexible electronic devices by digital printing – in particular, displays, photovoltaic cells, batteries, sensors etc. Inkjet printing technology is promising for the rapid production of prototypes and parties of specialized devices, although it is suitable for mass production of printed electronics. The advantages of inkjet printing include a sufficiently high resolution, flexibility, relatively low cost and compatibility with almost any type of substrates. This review analyzes the scientific literature on the use of alternative to thermal sintering methods of metal nanoparticles deposited by inkjet printing for application in electronics. Principles, advantages and disadvantages of sintering technologies are reviewed; applicability of different metal nanoparticles, as well as examples of substrate materials is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawahara J, Ersman PA, Nilsson D et al (2013) Flexible active matrix addressed displays manufactured by printing and coating techniques. J Polym Sci B Polym Phys 4:265–271

    Article  ADS  Google Scholar 

  2. Lin Q, Huang H, Jing Y, Fu H et al (2014) Flexible photovoltaic technologies. J Mater Chem C 2:1233–1247

    Article  Google Scholar 

  3. Gaikwad AM, Steingart DA, Ng TN, Schwartz DE, Whiting GL (2013) A flexible high potential printed battery for powering printed electronics. Appl Phys Lett 102:233302

    Article  ADS  Google Scholar 

  4. Kravchuk O, Reichenberger M (2016) Properties and long-term behavior of nanoparticle based inkjet printed strain gauges. J Mater Sci Mater Electron 27(10):10934–10940

    Article  Google Scholar 

  5. Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V (2010) Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J Mater Chem 20(39):8446–8453

    Article  Google Scholar 

  6. Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y (2011) Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 22(42):425601

    Article  ADS  Google Scholar 

  7. Castro T, Reifenberger R, Choi E (1990) Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B 42(13):8548

    Article  ADS  Google Scholar 

  8. Troitskii VN, Rakhmatullina AZ, Berestenko VI, Gurov SV (1983) Initial sintering temperature of ultrafine powders. Soviet Powder Metallurgy Metal Ceramics 22:12–14

    Article  Google Scholar 

  9. Lesyuk R (2008) Ink-jet formation of switching elements of chips using silver nanoparticles / R. Lesyuk, Ya. Bobitsky, V. Yillek. New technologies. – Vol. 2 (20). – P. 30

    Google Scholar 

  10. Kravchuk O, Grunewald K, Bahr J et al (2014) Production of miniaturized sensor structures on polymer substrates using inkjet printing. Adv Mater Res 1038:49–55

    Article  Google Scholar 

  11. Hwang HJ, Oh KH, Kim HS (2016) All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink. Sci Rep 6:19696. https://doi.org/10.1038/srep19696

    Article  ADS  Google Scholar 

  12. Galagan Y, Coenen EWC, Abbel R et al (2013) Photonic sintering of inkjet printed current collecting grids for organic solar cell applications. Org Electron 14:38–46

    Article  Google Scholar 

  13. Schuetz K, Hoerber J, Franke J (2014) Selective light sintering of aerosol-jet printed silver nanoparticle inks on polymer substrates. AIP Conf Proc 1593:732–735

    Article  ADS  Google Scholar 

  14. Guillot MJ, McCool SC, Schroder KA (2012) Simulating the thermal response of thin films during photonic curing. ASME 2012 international mechanical engineering congress and exposition, vol 2, pp 9–15

    Google Scholar 

  15. Schroder KA (2013) Mechanisms of photonic curing: processing high temperature films on low temperature substrates. NCC Nano, LLC. 200-B(14):78728

    Google Scholar 

  16. Schroder KA, McCool SC, Furlan WR (2006) Broadcast photonic curing of metallic nanoparticle films. Technical proceedings of the 2006 NSTI nanotechnology conference and trade show, vol 3, pp 198–201

    Google Scholar 

  17. Carter M, Sears J (2007) Photonic curing for sintering of nano-particulate material. Advances in powder metallurgy & particulate materials. In: Proceedings of the 2007 international conference on powder metallurgy & particulate materials, vol 2, pp 210–213

    Google Scholar 

  18. Farnsworth S, Schroder K (2012) Photonic curing for millisecond-drying of thin films. Specialist Printing Worldwide 4:34–35

    Google Scholar 

  19. Akhavan V, Farnsworth K, Schroder D et al (2013) Processing thick-film screen printed metalon CuO reduction ink with pulseforge tools. Coating 46:14–17

    Google Scholar 

  20. Ando B, Baglio S, LaMalfa S et al (2011) All inkjet printed system for strain measurement. Sensors: Proceedings of the IEEE Sensors Conference, pp 215–217

    Google Scholar 

  21. Marjanovic N, Hammerschmidt J, Perelaer J et al (2011) Inkjet printing and low temperature sintering of CuO and CdS as functional electronic layers and Schottky diodes. J Mater Chem 21:13634

    Article  Google Scholar 

  22. Tetznera K, Schroderb KA, Bock K (2014) Photonic curing of sol–gel derived HfO2 dielectrics fororganic field-effect transistors. Ceram Int 140:15753–15761

    Article  Google Scholar 

  23. Schroder KA, McCool SC, Furlan WR (2006) Broadcast photonic curing of metallic nanoparticle films. Nanotechnologies, Inc. 3:198–201

    Google Scholar 

  24. Yung KC, Gu X, Lee CP et al (2010) Ink-jet printing and camera flash sintering of silver tracks on different substrates. J Mater Process Technol 210:2268–2272

    Article  Google Scholar 

  25. Tobjörk D, Aarnio H, Pulkkinen P et al (2012) IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520:2949–2955

    Article  ADS  Google Scholar 

  26. Sowade E, Kang H, Mitra KY, Weiß OJ, Weber J, Baumann RR (2015) Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second. J Mater Chem C 3:11815–11826

    Article  Google Scholar 

  27. Denneulin A, Blayo A, Neuman C (2011) Infra-red assisted sintering of inkjet printed silver tracks on paper substrates. Bras, J. In. J Nanopart Res 13(9):3815–3823

    Article  Google Scholar 

  28. Tobjörk D, Aarnio H, Pulkkinen P, Bollström R, Määttänen A, Ihalainen P, Mäkelä T, Peltonen J, Toivakka M, Tenhu H, Österbacka R (2012) IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520:2949–2955

    Article  ADS  Google Scholar 

  29. Määttänen A, Ihalainen P, Pulkkinen P, Wang S, Tenhu H, Peltonen J (2012) Inkjet-printed gold electrodes on paper: characterization and functionalization. ACS Appl Mater Interfaces 4:955–964

    Article  Google Scholar 

  30. Cherrington M, Claypole TC, Deganello D, Mabbett I, Watson T, Worsley D (2011) Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink. J Mater Chem 21:7562–7564

    Article  Google Scholar 

  31. Kumpulainen T, Pekkanen J, Valkama J et al (2011) Low temperature nanoparticle sintering with continuous wave and pulse lasers. Opt Laser Technol 43:570–576

    Article  ADS  Google Scholar 

  32. Laakso P, Kemppainen S, Ruotsalainen E et al (2009) Sintering of printed nanoparticle structures using laser treatment. ICALEO 2009 – 28th international congress on applications of lasers and electro-optics, congress proceedings, vol 102, pp 1360–1366

    Google Scholar 

  33. Seung HK, Pan H, Grigoropoulos CP et al (2007) All inkjet printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202–345210

    Article  Google Scholar 

  34. Chung J, Ko S, Bieri NR et al (2004) Conductor microstructures by laser curing of printed gold nanoparticle ink. Appl Phys Lett 84:801−803

    Google Scholar 

  35. Chungb J, Poulikakosa D et al (2004) Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension. Superlattice Microst 35:437–444

    Article  ADS  Google Scholar 

  36. Halonen E, Heinonen E, Mäntysalo M (2013) The effect of laser sintering process parameters on cu nanoparticle ink in room conditions. Optics Photonics J 3:40–44

    Article  ADS  Google Scholar 

  37. Zenou M, Ermak O, Saar A et al (2014) Laser sintering of copper nanoparticles. J Phys D Appl Phys 47:025501–025512

    Article  ADS  Google Scholar 

  38. Ko S, Chung J, Choi Y et al (2005) Fabrication of inkjet printed flexible electronics by low temperature subtractive laser processing. In: Proceedings of the international mechanical engineering congress and exposition, p 80535 (1–5)

    Google Scholar 

  39. Lesyuk R, Bobitski Y, Kotlyarchuk B, Jillek W (2010) Laser sintering for conductive traces fabrication for electronics needs. Electronics and Communication (in Ukrainian) 3(56):16–19

    Google Scholar 

  40. Bieri NR, Chung J, Haferl SE et al (2003) Microstructuring by printing and laser curing of nanoparticle solutions. Appl Phys Lett 82:3529–3531

    Article  ADS  Google Scholar 

  41. Chung J, Bieri NR, Ko S et al (2004) In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Appl Phys A 79:1259–1261

    Article  ADS  Google Scholar 

  42. Choi TY, Poulikakos D, Grigoropoulos C (2004) Fountain-pen-based laser microstructuring with gold nanoparticle inks. Appl Phys Lett 85:13–15

    Article  ADS  Google Scholar 

  43. Chung J, Ko S, Grigoropoulos CP et al (2005) Damage-free low temperature pulsed laser printing of gold nanoinks on polymers. J Heat Transf 127:724–732

    Article  Google Scholar 

  44. Lesyuk R, Jillek W, Bobitski Y et al (2011) Low-energy pulsed laser treatment of silver nanoparticles for interconnects fabrication by ink-jet method. Microelectron Eng 88(3):318–321

    Article  Google Scholar 

  45. Laakso P, Ruotsalainen S, Halonen E et al (2009) Sintering of printed nanoparticles structures using laser treatment. In: Proceedings of the 5th international WLT conference on lasers in manufacturing, pp 527–532

    Google Scholar 

  46. Alemohammad H, Aminfar O, Toyserkani E (2008) Morphology and microstructure analysis of nano-silver thin films deposited by laser-assisted maskless microdeposition. J Micromech Microeng 18:115015 (1–12)

    Article  Google Scholar 

  47. Perelaer J, DeGans BJ, Schubert US (2006) Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater 18:2101–2104

    Article  Google Scholar 

  48. Perelaer J, Schubert US (2010) Inkjet printing and alternative sintering of narrow conductive tracks on flexible substrates for plastic electronic applications. Radio frequency identification fundamentals and applications, design methods and solutions, p 324

    Google Scholar 

  49. Cheng DK (1989) Field and wave electromagnetics. Addison-Wesley Co. Inc., Reading, p 155

    Google Scholar 

  50. Perelaer J, Klokkenburg M, Hendriks CE et al (2009) Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv Mater 21:4830–4834

    Article  Google Scholar 

  51. Cauchois R, Saadaoui M, Yakoub A et al (2012) Impact of variable frequency microwave and rapid thermal sintering on microstructure of inkjet-printed silver nanoparticles. J Mater Sci 47:7110–7116

    Article  ADS  Google Scholar 

  52. Reinhold I, Hendriks CE, Eckardt R et al (2009) Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J Mater Chem 19:3384–3388

    Article  Google Scholar 

  53. Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res B 208:281–286

    Article  ADS  Google Scholar 

  54. Solodovnyk AN, Li W, Fei F et al (2012) Involving low-pressure plasma for surface pretreatment and post print sintering of silver tracks on polymer substrates. In: Proceedings of the international conference nanomaterials: applications and properties, vol 1, pp 1–4

    Google Scholar 

  55. Maa S, Singler V, Bromberg L et al (2014) Low temperature plasma sintering of silver nanoparticles. Appl Surf Sci 293:207–215

    Article  ADS  Google Scholar 

  56. Wünscher S, Stumpf S, Teichler A et al (2012) Localized atmospheric plasma sintering of inkjet printed silver nanoparticles. J Mater Chem 22:24569

    Article  Google Scholar 

  57. Magdassi S, Grouchko M, Berezin O et al (2010) Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4:1943–1948

    Article  Google Scholar 

  58. Zapka W, Voil W, Loderer C et al (2008) Low temperature chemical post-treatment of inkjet printed nano-particle silver inks. In: Proceedings of NIP24 and Digital Fabrication, pp 906–911

    Google Scholar 

  59. Wakuda D, Kim CJ, Kim KS et al (2008) Room temperature sintering mechanism of Agnanoparticlepaste. In: Proceedings of the 2nd electronics systemintegration technology conference, pp 909–914

    Google Scholar 

  60. Coutts MJ, Cortie MB, Ford MJ et al (2009) Rapid and controllable sintering of gold nanoparticle inks at room temperature usinga chemical agent. J Phys Chem C 113:1325–1328

    Article  Google Scholar 

  61. Allen ML (2011) Nanoparticle sintering methods and applications for printed electronics. Aalto University School of Electrical Engineering, pp 41–44

    Google Scholar 

  62. Magdassi S, Grouchko M, Kamyshny A (2009) Conductive inkjet inks for plastic electronics: air stable copper nanoparticles and room temperature sintering. NIP25 and digital fabrication. Tech Program Proc 25:611–613

    Google Scholar 

  63. Allen ML, Leppäniemi J, Vilkman M et al (2010) Substrate-facilitated nanoparticle sintering and component interconnection procedure. Nanotechnology 21:475204

    Article  Google Scholar 

  64. Andersson H, Manuilskiy A, Gao J et al (2014) Investigation of humidity sensor effect in silver nanoparticle ink sensors printed on paper. IEEE Sensors J 14:623–628

    Article  ADS  Google Scholar 

  65. Olkkonen J, Leppäniemi J, Mattila T et al (2014) Sintering of inkjet printed silver tracks with boiling salt water. J Mater Chem C 2:3577–3582

    Article  Google Scholar 

  66. Andersson H, Manuilskiy A, Lidenmark C et al (2013) The influence of paper coating content on room temperature sintering of silvernanoparticle ink. Nanotechnology 24:455203–455212

    Article  Google Scholar 

  67. Allen ML, Aronniemi M, Mattila T et al (2008) Electrical sintering of nanoparticle structures. Nanotechnology 19:175–201

    Article  Google Scholar 

  68. Alastalo A, Mattila T, Allen ML et al (2008) Rapid electrical sintering of nanoparticle structures. Mater Res Soc Symp Proc 1113:2–7

    Article  Google Scholar 

  69. Werner C, Behrens G, Hellbernd KH et al (2011) Electrical sintering of printed metal structures for mechanical sensors. LOPE-C Proc, pp 192–195

    Google Scholar 

  70. Allen M, Alastalo A, Suhonen M et al (2011) Contactless electrical sintering of silver nanoparticles on flexible substrates. IEEE Trans Microwave Theory Tech 59:1419−1429

    Article  Google Scholar 

  71. Ko S, Pan H, Hwang DJ et al (2007) High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films. J Appl Phys 102:93–102

    Google Scholar 

Download references

Acknowledgments

The financial support of Ministry of Education and Science of Ukraine should be acknowledged (grant DB/Fotonika № 0117U007176).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kravchuk, O., Lesyuk, R., Bobitski, Y., Reichenberger, M. (2018). Sintering Methods of Inkjet-Printed Silver Nanoparticle Layers. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-91083-3_23

Download citation

Publish with us

Policies and ethics