Skip to main content

Fabrication and Characterization of High-Performance Anti-reflecting Nanotextured Si Surfaces for Solar Cells

  • Conference paper
  • First Online:
Nanooptics, Nanophotonics, Nanostructures, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 210))

Included in the following conference series:

Abstract

Experimental results on application of metal-assisted chemical etching (MACE) method for fabricating different morphologies on the surface of Si wafer, and the comparison of their optical properties in terms to develop structures with low reflectivity and high light absorption are presented. In order to obtain efficient anti-reflecting surfaces, Si nanowire arrays, and complex structures composed of micropyramids obtained by conventional alkali chemical etching and Si nanowires prepared by MACE method on the side faces of pyramids were produced on Si wafers. It was found that micropyramids textured by Si nanowires with an average diameter of 130 nm and 325 nm in height, show the highest absorbance (about 98%) and the lowest reflectance (less than 1%) values in the wavelength range 300-1100 nm. In comparison, the reflection of Si nanowire arrays prepared by MACE method was found to be 4%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapin DM, Fuller CS, Pearson GL (1964) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676

    Article  ADS  Google Scholar 

  2. Green MA (2001) Crystalline silicon photovoltaic cells. Adv Mater 13:1019–1022

    Article  Google Scholar 

  3. Goetzberger A, Hebling C, Schock HW (2003) Photovoltaic materials, history, status and outlook. Mater Sci Eng R 40:1–46

    Article  Google Scholar 

  4. Swanson RM (2006) A vision for crystalline silicon photovoltaics. Prog Photovolt 14:443–453

    Article  Google Scholar 

  5. Zhao J, Wang A, Green MA, Ferrazza F (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993

    Article  ADS  Google Scholar 

  6. Knechtli RC, Loo RY, Kamath GS (1984) High-efficiency GaAs solar cells. IEEE Trans Electron Devices 31:577–588

    Article  ADS  Google Scholar 

  7. Tanabe K (2009) A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies 2:504–530

    Article  Google Scholar 

  8. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945

    Article  ADS  Google Scholar 

  9. Yerokhov V, Ierokhova O (2016) Improved porous silicon-based multifunctional materials for the solar cells antireflection coating. 2016 International Conference on Electronics and Information Technology, EIT 2016 – Conference Proceedings, pp 49–52

    Google Scholar 

  10. Yerokhov V, Ierokhova O (2016) Coatings of the black-silicon type for silicon solar cells. Modern problems of radio engineering, telecommunications and computer science, Proceedings of the 13th International Conference on TCSET 2016, pp 388–391

    Google Scholar 

  11. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–226

    Article  ADS  Google Scholar 

  12. Peng K, Xu Y, Wu Y, Yan Y, Lee ST, Zhu J (2005) Aligned single-crystalline Si nanowire arrays for photovoltaic applications: review. Small 1(11):1062–1067

    Article  Google Scholar 

  13. Sun CH, Min WL, Linn NC, Jiang P, Jiang B (2007) Templated fabrication of large area subwavelength antireflection gratings on silicon. Appl Phys Lett 91:231105

    Article  ADS  Google Scholar 

  14. Chu AK, Wang JS, Tsai ZY, Lee CK (2009) A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers. Sol Energy Mater Sol Cells 93:1276–1280

    Article  Google Scholar 

  15. Wang HP, Lai KY, Lin YR, Lin CA, He JH (2010) Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection. Langmuir 26:12855–12858

    Article  Google Scholar 

  16. Han SE, Chen G (2010) Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. Nano Lett 10(11):4692–4696

    Article  ADS  Google Scholar 

  17. Wang FY, Yang QD, Xu G et al (2011) Highly active and enhanced photocatalytic silicon nanowire arrays. Nanoscale 3:3269–3276

    Article  ADS  Google Scholar 

  18. Lin H, Xiu F, Fang M et al (2014) Rational design of inverted nanopencil arrays for cost-effective, broadband and omnidirectional light harvesting. ACS Nano 8:3752–3760

    Article  Google Scholar 

  19. Wang HP, Lin TY, Tsai ML et al (2014) Toward efficient and omnidirectional n-type Si solar cells: concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures. ACS Nano 8:2959–2969

    Article  Google Scholar 

  20. Peng KQ, Lee ST (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23:198–215

    Article  Google Scholar 

  21. Parida B, Choi J, Lim G, Park S, Kim K (2014) Formation of nanotextured surfaces on microtextured Si solar cells by metal-assisted chemical etching process. J Nanosci Nanotechnol 14(12):9224–9231

    Article  Google Scholar 

  22. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  ADS  Google Scholar 

  23. Maryamova I, Druzhinin A, Lavitska E, Gortynska I, Yatzuk Y (2000) Low temperature semiconductor mechanical sensors. Sens Actuators A Phys 85:153–157

    Article  Google Scholar 

  24. Druzhinin A, Lavitska E, Maryamova I (1999) Medical pressure sensors on the basis of silicon microcrystals and SOI layers. Sens Actuators B Chem 58:415–519

    Article  Google Scholar 

  25. Cui Y, Zhong ZH, Wang DL, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3:149–152

    Article  ADS  Google Scholar 

  26. Peng KQ, Jie JS, Zhang WJ, Lee ST (2008) Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett 93:033105

    Article  ADS  Google Scholar 

  27. Goldberger J, Hochbaum AI, Fan R, Yang PD (2006) Silicon vertically integrated nanowire field effect transistors. Nano Lett 6:973–977

    Article  ADS  Google Scholar 

  28. Chen LJ (2007) Silicon nanowires: the key building block for future electronic devices. J Mater Chem 17:4639

    Article  Google Scholar 

  29. Druzhinin A, Ostrovskii I, Kogut I (2006) Thermoelectric properties of Si-Ge whiskers. Mater Sci Semicond Process 9:853–857

    Article  Google Scholar 

  30. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  Google Scholar 

  31. Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  ADS  Google Scholar 

  32. Hochbaum A, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–167

    Article  ADS  Google Scholar 

  33. Druzhinin A, Ostrovskii I, Kogut I, Nichkalo S, Shkumbatyuk T (2011) Si and Si-Ge wires for thermoelectrics. Phys Status Solidi C 8(3):867–870

    Article  ADS  Google Scholar 

  34. Fang H, Li X, Song S, Xu Y, Zhu J (2008) Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 19:255703

    Article  ADS  Google Scholar 

  35. Garnett EC, Yang P (2008) Silicon nanowire radial p−n junction solar cells. J Am Chem Soc 130:9224–9225

    Article  Google Scholar 

  36. Kelzenberg MD, Turner-Evans DB, Kayes BM, Filier MA, Putnam MC, Lewis NS, Atwater HA (2008) Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett 8:710–714

    Article  ADS  Google Scholar 

  37. Stelzner T, Pietsch M, Andra G, Falk F, Ose E, Christiansen S (2008) Silicon nanowire-based solar cells. Nanotechnology 19:295203

    Article  Google Scholar 

  38. Druzhinin АA, Yerokhov VY, Nichkalo SI, Berezhanskyi YI, Chekaylo MV (2015) Texturing of the silicon substrate with nanopores and Si nanowires for anti-reflecting surfaces of solar cells. J Nano Electron Phys 7(2):02030-1–02030-6

    Article  Google Scholar 

  39. Zhu J, Yu Z, Burkhard GF, Hsu CM, Connor ST, Xu Y, Wang Q, McGehee M, Fan S, Cui Y (2008) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 9:279–282

    Article  ADS  Google Scholar 

  40. Li J, Yu H, Wong SM, Zhang G, Sun X, Lo PGQ, Kwong DL (2009) Si nanopillar array optimization on Si thin films for solar energy harvesting. Appl Phys Lett 95:033102

    Article  ADS  Google Scholar 

  41. Ramanujam J, Shiri D, Verma A (2011) Silicon nanowire growth and properties: a review. Mater Express 1(2):105–126

    Article  Google Scholar 

  42. Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Small-diameter silicon nanowire surfaces. Science 299:1874–1877

    Article  ADS  Google Scholar 

  43. Tsakalakos L, Balch J, Fronheiser J, Korevaar BA, Sulima O, Rand J (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117

    Article  ADS  Google Scholar 

  44. Tsakalakos L, Balch J, Fronheiser J, Shih MY, LeBoeuf SF et al (2007) Strong broadband optical absorption in silicon nanowire films. J Nanophoton 1:013552

    Article  Google Scholar 

  45. Druzhinin A, Yerokhov V, Nichkalo S, Berezhanskyi Y (2016) Micro- and nanotextured silicon for antireflective coatings of solar cells. J Nano Res 39:89–95

    Article  Google Scholar 

  46. Nichkalo S, Druzhinin A, Evtukh A, Bratus’ O, Steblova O (2017) Silicon nanostructures produced by modified MacEtch method for antireflective Si surface. Nanoscale Res Lett 12:106

    Article  ADS  Google Scholar 

  47. Li X, Li J, Chen T, Tay BK, Wang J, Yu H (2010) Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications. Nanoscale Res Lett 5:1721–1726

    Article  ADS  Google Scholar 

  48. Kelzenberg MD, Boettcher SW, Petykiewicz JA et al (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  ADS  Google Scholar 

  49. Pei Z, Hu H, Li S, Ye C (2017) Fabrication of orientation-tunable Si nanowires on silicon pyramids with omnidirectional light absorption. Langmuir 33(15):3569–3575

    Article  Google Scholar 

  50. Huang Z, Geyer N, Werner P, de Boor J, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308

    Article  Google Scholar 

  51. Han H, Huang Z, Lee W (2014) Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9:271–304

    Article  Google Scholar 

  52. Schmidt V, Senz S, Gösele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5:931–935

    Article  ADS  Google Scholar 

  53. Druzhinin AA, Ostrovskii IP (2004) Investigation of Si-Ge whiskers growth by CVD. Phys Status Solidi C 1(2):333–336

    Article  ADS  Google Scholar 

  54. Druzhinin A, Evtukh A, Ostrovskii I, Khoverko Y, Nichkalo S, Dvornytskyi S (2015) Technological approaches for growth of silicon nanowire arrays. Springer Proc Phys 156:301–307

    Article  Google Scholar 

  55. Yuan G, Aruda K, Zhou S, Levine A, Xie J, Wang D (2011) Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion. Angew Chem Int Ed 50:2334–2338

    Article  Google Scholar 

  56. Lin C, Povinelli ML (2011) Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics. Opt Express 19:A1148–A1154

    Article  ADS  Google Scholar 

  57. Bao H, Ruan X (2010) Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. Opt Lett 35:3378–3380

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nichkalo, S., Druzhinin, A., Yerokhov, V., Ostapiv, O. (2018). Fabrication and Characterization of High-Performance Anti-reflecting Nanotextured Si Surfaces for Solar Cells. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-91083-3_19

Download citation

Publish with us

Policies and ethics