Skip to main content

Spectrum of Electron in Quantum Well with Continuous Position-Dependent Effective Mass

  • Conference paper
  • First Online:
Nanooptics, Nanophotonics, Nanostructures, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 210))

Included in the following conference series:

  • 564 Accesses

Abstract

Within the model of rectangular potential profile and continuous position-dependent effective mass of electron in the double-barrier open semiconductor plane nano-heterostructure, the exact solutions of Schrodinger equation are obtained. Using them, the transmission coefficient, resonance energies, and widths of sub-barrier quasi-stationary electron states are calculated for the structure with In0.53Ga0.47As wells and In0.52Al0.48As barriers. The transmission coefficient and spectral characteristics of electron states are analyzed as functions of the width of near-interface region where the effective mass linearly depends on coordinate. It is shown that the increasing width of near-interface region between wells and barriers does not change the heights of maxima of transmission coefficient peaks but shifts and broadens them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chastanet D, Bousseksou A, Lollia G, Bahriz M, Julien FH, Baranov AN, Teissier R, Colombelli R (2014) High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers. Appl Phys Lett 105:111118. https://doi.org/10.1063/1.4895763

    Article  ADS  Google Scholar 

  2. Schwarz B, Ristanic D, Reininger P, Zederbauer T, MacFarland D, Detz H, Maxwell Andrews A, Schrenk W, Strasser G (2015) High performance bi-functional quantum cascade laser and detector. Appl Phys Lett 107:071104. https://doi.org/10.1063/1.4927851

    Article  ADS  Google Scholar 

  3. Sakr S, Crozat P, Gacemi D, Kotsar Y, Pesach A, Quach P, Isac N, Tchernycheva M, Vivien L, Bahir G, Monroy E (2013) F. H. Julien. GaN/AlGaN waveguide quantum cascade photodetectors at 1.55m with enhanced responsivity and 40GHz frequency bandwidth. Appl Phys Lett 102:011135. https://doi.org/10.1063/1.4775374

    Article  ADS  Google Scholar 

  4. Reininger P, Zederbauer T, Schwarz B, Detz H, MacFarland D, Maxwell Andrews A, Schrenk W, Strasser G (2015) InAs/AlAsSb based quantum cascade detector. Appl Phys Lett 107:081107. https://doi.org/10.1063/1.4929501

    Article  ADS  Google Scholar 

  5. Bastard G (1981) Superlattice band structure in the envelope-function approximation. Phys Rev B 24:5693. https://doi.org/10.1103/PhysRevB.24.5693

    Article  ADS  Google Scholar 

  6. Zhu Q-G, Kroemer H (1983) Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors. Phys Rev B 27:3519. https://doi.org/10.1103/PhysRevB.27.3519

    Article  ADS  Google Scholar 

  7. von Roos O (1983) Position-dependent effective masses in semiconductor theory. Phys Rev B 27:7547. https://doi.org/10.1103/PhysRevB.27.7547

    Article  ADS  Google Scholar 

  8. BenDaniel DJ, Duke CB (1966) Space-charge effects on electron tunneling. Phys Rev 152:683. https://doi.org/10.1103/PhysRev.152.683

    Article  ADS  Google Scholar 

  9. Galbraith G (1988) Duggan. Envelope-function matching conditions for GaAs/(Al, Ga)As heterojunctions. Phys Rev B 38:10057. https://doi.org/10.1103/PhysRevB.38.10057

    Article  ADS  Google Scholar 

  10. Einevoll GT (1988) P C Hemmer. The effective-mass Hamiltonian for abrupt heterostructures. J Phys C Solid State Phys 21:L1193. https://doi.org/10.1088/0022-3719/21/36/001

    Article  ADS  Google Scholar 

  11. Einevoll GT, Hemmer PC, Thomsen J (1990) Operator ordering in effective-mass theory for heterostructures. I. Comparison with exact results for superlattices, quantum wells, and localized potentials. Phys Rev B 42:3485. https://doi.org/10.1103/PhysRevB.42.3485

    Article  ADS  Google Scholar 

  12. Einevoll GT (1990) Operator ordering in effective-mass theory for heterostructures. II. Strained systems. Phys Rev B 42:3497. https://doi.org/10.1103/PhysRevB.42.3497

    Article  ADS  Google Scholar 

  13. Einevoll GT, Hemmer PC (1991) Superlattice minibands-explicit formulae for band gaps and effective masses. Semicond Sci Technol 6:590. https://doi.org/10.1088/0268-1242/6/7/004

    Article  ADS  Google Scholar 

  14. Roy B, Roy P (2002) A Lie algebraic approach to effective mass Schrödinger equations. J Phys A Math Gen 35(3961). https://doi.org/10.1088/0305-4470/35/17/310

    Article  MathSciNet  ADS  Google Scholar 

  15. Gonul B, Ozer O, Gonul B, Uzgun F (2002) Exact solutions of effective-mass Schrodinger equations. Modern Phys Lett A 17:2453. https://doi.org/10.1142/S0217732302008514

    Article  MATH  ADS  Google Scholar 

  16. Koc R, Koca M, Sahinoglu G (2005) Scattering in abrupt heterostructures using a position dependent mass Hamiltonian. Eur Phys J B 48:583. https://doi.org/10.1140/epjb/e2005-00422-x

    Article  ADS  Google Scholar 

  17. Ganguly A, Kuru S, Negro J, Nieto LM (2006) A study of the bound states for square potential wells with position-dependent mass. Phys Lett A 360:228. https://doi.org/10.1016/j.physleta.2006.08.032

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Hassanabadi H, Chung WS, Zare S, Alimohammadi M (2017) Scattering of position-dependent mass Schrodinger equation with delta potential. Eur Phys J Plus 132:135. https://doi.org/10.1140/epjp/i2017-11422-0

    Article  Google Scholar 

  19. Wang H, Farias GA, Freire VN (1999) Graded interface effects on the carriers confinement in single GaN/AlxGa1-xN wurtzite quantum wells. Solid State Commun 110:587. https://doi.org/10.1016/S0038-1098(99)00112-X

    Article  ADS  Google Scholar 

  20. Lima FMS, Enders BG, Fonseca ALA, Nunes OAC, Freire VN, Freire JAK, Farias GA, da Silva EF, Jr. (2004) Effect of non-abrupt doping profiles on the carrier sheet density in one-side modulation-doped GaAs/AlGaAs quantum wells. Phys Status Solidi C 1:S2–S215. https://doi.org/10.1002/pssc.200405143

    Article  Google Scholar 

  21. Tkach MV, Seti JO, Boyko IV (2013) O.M.Voitsekhivska. Optimization of quantum cascade laser operation by geometric design of cascade active band in open and closed models. Condens Matter Phys 16:33701. https://doi.org/10.5488/CMP.16.33701

    Article  Google Scholar 

  22. Тkach МV, Seti JО, Boyko ІV, Voitsekhivskа OМ (2013) Dynamic conductivity of resonance tunnel structures in the models of open cascades in nanolasers. Rom Rep Phys 65:1443

    Google Scholar 

  23. Jirauschek C, Kubis T (2014) Modeling techniques for quantum cascade lasers. Appl Phys Rev 1:011307. https://doi.org/10.1063/1.4863665

    Article  Google Scholar 

  24. P. Harrison, A. Valavanis. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures, 4th edn. (Wiley, Hoboken/Chichester, 2016).

    Book  Google Scholar 

  25. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Courier Corporation, New York

    MATH  Google Scholar 

  26. Davies JH (1998) The physics of low-dimensional semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  27. Tkach NV, Seti YA (2009) Evolution and collapse of quasistationary states of an electron in planar symmetric three-barrier resonance-tunneling structures. Low Temp Phys 35:556. https://doi.org/10.1063/1.3170931

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Seti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seti, J., Tкach, M., Voitsekhivska, O. (2018). Spectrum of Electron in Quantum Well with Continuous Position-Dependent Effective Mass. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-91083-3_15

Download citation

Publish with us

Policies and ethics