Skip to main content

Anion Exchange Resin Modified with Nanoparticles of Hydrated Zirconium Dioxide for Sorption of Soluble U(VI) Compounds

  • Conference paper
  • First Online:
Nanooptics, Nanophotonics, Nanostructures, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 210))

Included in the following conference series:

Abstract

Organic–inorganic sorbents have been synthesized by modification of gel-like anion exchange resin with hydrated zirconium dioxide. Such synthesis conditions as solution concentration, temperature, and surface tension of the solvent were varied. A theoretical approach, which is based on the Ostwald–Freundlich equation, has been developed for purposeful control of size of the incorporated particles. Depending on the synthesis method, particles of one or other size dominate in the polymer matrix (from ≈5 nm to several microns). Sorption of uranyl anionic complexes was investigated. It was found that sorption rate is described by models of chemical reactions of pseudo-first or pseudo-second order. The samples modified with small particles (from several nanometers up to 300 nm) show higher sorption rate than the pristine resin. Decrease of particle size facilitates chemical regeneration of the sorbents. Desorption degree reaches 95–100%, when 1 M NaHCO3 solution is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morrell JS, Jackson MJ (eds) (2013) Uranium processing and properties. Springer Science + Business Media, New York

    Google Scholar 

  2. WHO (2008) Guidelines for drinking-water quality, 3rd ed. Incorporating the first and second addenda, vol 1. Recommendations. Geneva

    Google Scholar 

  3. Shakur HR, Saraee KRE, Abdi MR et al (2016) Selective removal of uranium ions from contaminated waters using modified-X nanozeolite. Appl Radiat Isot 118:43–55

    Article  Google Scholar 

  4. Yakout SM (2016) Evaluation of mineral and organic acids on the selective separation of radioactive elements (U and Th) using modified carbon. Desalin Water Treat 57(7):3292–3297

    Article  Google Scholar 

  5. Yi ZJ, Yao J, Kuang YF et al (2016) Uptake of hexavalent uranium from aqueous solutions by using coconut husk activated carbon. Desalin Water Treat 57(4):1749–1755

    Article  Google Scholar 

  6. Menacer S, Lounis А, Guedioura B et al (2016) Uranium removal from aqueous solutions by adsorption on Aleppo pine sawdust, modified by NaOH and neutron irradiation. Desalin Water Treat 57(34):16184–16195

    Article  Google Scholar 

  7. Loureiro JM, Kartel MT (eds) (2009) Combined and hybrid adsorbents: fundamentals and applications. Springer, Berlin

    Google Scholar 

  8. Das А, Sundararajan М, Paul В et al (2017) Assesment of Phosphate Functionalised Silica Gel (PFSG) for separation and recovery of uranium from Simulated Silicide Fuel Scraps Dissolver Solution (SSFSDS). Colloids Surf A Physicochem Eng Asp 530:124–133

    Article  Google Scholar 

  9. Li F, Yang Z, Weng H et al (2018) High efficient separation of U(VI) and Th(IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide. Chem Eng J 332:340–350

    Article  Google Scholar 

  10. Li ZJ, Wang L, Yuan LY et al (2015) Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. J Hazard Mater 290:26–33

    Article  ADS  Google Scholar 

  11. Sun YB, Ding СС, Cheng WC et al (2014) Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408

    Article  Google Scholar 

  12. Fan FL, Qin Z, Bai J et al (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46

    Article  Google Scholar 

  13. Zhao Y, Li J, Zhao L et al (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283

    Article  Google Scholar 

  14. Tan L, Zhang X, Liu Q et al (2015) Synthesis of Fe3O4-TiO2 core-shell magnetic composites for highly efficient sorption of uranium (VI). Colloids Surf A Physicochem Eng Asp 469:279–286

    Article  Google Scholar 

  15. Zhang J, Guo Z, Li Y et al (2016) Effect of environmental conditions on the sorption of uranium on Fe3O4@MnO2 hollow spheres. J Mol Liq 223:534–540

    Article  Google Scholar 

  16. Loukanov А, Udono Н, Takakura R et al (2017) Monitoring and extraction of uranium in polluted acid mine drainage by super-paramagnetic nanoparticles coated with carbon nanodots. J Radioanal Nucl Chem 314(2):1149–1159

    Article  Google Scholar 

  17. El-Sherif RM, Lasheen TA, Jebril EA (2017) Fabrication and characterization of CeO2-TiO2-Fe2O3 magnetic nanoparticles for rapid removal of uranium ions from industrial waste solutions. J Mol Liq 241:260–269

    Article  Google Scholar 

  18. Xu M, Han X, Hua D (2017) Polyoxime-functionalized magnetic nanoparticles for uranium adsorption with high selectivity over vanadium. J Mater Chem A 5:12278–12284

    Article  Google Scholar 

  19. Han R, Zou W, Wang Y et al (2007) Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93(3):127–143

    Article  Google Scholar 

  20. Yaroshenko NA, Perlova OV, Sazonova VF et al (2012) Sorption of uranium compounds by zirconium-silica nanosorbents. Russ J Appl Chem 85(6):849–855

    Article  Google Scholar 

  21. Perlova OV, Sazonova VF, Yaroshenko NA et al (2014) Kinetics of sorption of uranium(VI) compounds with zirconium-silica nanosorbents. Russ J Phys Chem A 88(6):1012–1016

    Article  Google Scholar 

  22. Yang D, Song S, Zou Y et al (2017) Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chem Eng J 323:143–152

    Article  Google Scholar 

  23. Zou Y, Wang P, Yao W et al (2017) Synergistic immobilization of UO2 2+ by novel graphitic carbon nitride@layered double hydroxide nanocomposites from wastewater. Chem Eng J 330:573–584

    Article  Google Scholar 

  24. Cakir P, Inan S, Altas Y (2014) Investigation of strontium and uranium sorption onto zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design. J Hazard Mater 271(3):108–119

    Article  Google Scholar 

  25. Yuan D, Chen L, Xiong X et al (2016) Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE. Chem Eng J 285:358–362

    Article  Google Scholar 

  26. Yu HW, Yang SS, Ruan HM et al (2015) Recovery of uranium ions from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite. Appl Clay Sci 111:67–75

    Article  Google Scholar 

  27. Bai J, Yin X, Zhu Y et al (2016) Selective uranium sorption from salt lake brines by amidoximated Saccharomyces cerevisiae. Chem Eng J 283:889–895

    Article  Google Scholar 

  28. Shen L, Han Х, Qian J et al (2017) Amidoximated poly(vinyl imidazole)-functionalized molybdenum disulfide sheets for efficient sorption of a uranyl tricarbonate complex from aqueous solutions. RSC Adv 7:10791–10797

    Article  Google Scholar 

  29. Liu Y, Li Q, Cao X et al (2013) Removal of uranium(VI) from aqueous solutions by CMK-3 and its polymer composite. Appl Surf Sci 285:258–266

    Article  ADS  Google Scholar 

  30. Shao D, Hou G, Li J et al (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium (VI). Chem Eng J 255:604–612

    Article  Google Scholar 

  31. Turanov AN, Karandashev VK, Masalov VM et al (2013) Adsorption of lanthanides(III), uranium(VI) and thorium(IV) from nitric acid solutions by carbon inverse opals modified with tetraphenylmethylenediphospine dioxide. J Colloid Interface Sci 405:183–188

    Article  ADS  Google Scholar 

  32. Abdeen Z, Akl ZF (2015) Uranium (VI) adsorption from aqueous solutions using poly(vinyl alcohol)/carbon nanotube composites. RSC Adv 5:74220–74229

    Article  Google Scholar 

  33. Al Keshtkar AR, Irani M, Moosavian A (2013) Removal of uranium (VI) from aqueous solutions by adsorption using a novel electrospun PVA/TEOS/APTES hybrid nanofiber membrane: comparison with casting PVA/TEOS/APTES hybrid membrane. J Radioanal Nucl Chem 295(1):563–571

    Article  Google Scholar 

  34. Rahmani-Sani A, Hosseini-Bandegharaei A, Hosseinib S-H et al (2015) Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid. J Hazard Mater 286:152–163

    Article  Google Scholar 

  35. Elabd AA, Zidan WI, Abo-Aly MM et al (2014) Uranyl ions adsorption by novel metal hydroxides loaded Amberlite IR 120. J Environ Radioact 134:99–108

    Article  Google Scholar 

  36. Zidan WI, Abo-Aly MM, Elhefnawy OA et al (2014) Batch and column studies on uranium adsorption by Amberlite XAD-4 modified with nano-manganese dioxide. J Radioanal Nucl Chem 304(2):645–653

    Article  Google Scholar 

  37. Dzyazko YS, Perlova OV, Perlova NA et al (2017) Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U(VI) cations. Desalin Water Treat 69:142–152

    Article  Google Scholar 

  38. Perlova N, Dzyazko Y, Perlova O et al (2017) Formation of zirconium hydrophosphate nanoparticles and their effect on sorption of uranyl cations. Nanoscale Res Lett 12:209. https://doi.org/10.1186/s11671-017-1987-y

    Article  ADS  Google Scholar 

  39. Gao Q, Hu J, Li R et al (2016) Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiat Phys Chem 122:1–8

    Article  ADS  Google Scholar 

  40. Zhang S, Zhao X, Li B et al (2016) “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition. J Hazard Mater 314:95–104

    Article  ADS  Google Scholar 

  41. Heshmati H, Torab-Mostaedi M, Gilani HG et al (2015) Kinetic, isotherm, and thermodynamic investigations of uranium(VI) adsorption on synthesized ion-exchange chelating resin and prediction with an artificial neural network. Desalin Water Treat 55(4):1076–1087

    Article  Google Scholar 

  42. Zhou L, Zou H, Huang Z et al (2016) Adsorption of uranium (VI) from aqueous solution using magnetic carboxymethyl chitosan nano-particles functionalized with ethylenediamine. J Radioanal Nucl Chem 308(3):935–946

    Article  Google Scholar 

  43. Şimşek S, Yilmaz E, Boztuğ A (2013) Amine-modified maleic anhydride containing terpolymers for the adsorption of uranyl ion in aqueous solutions. J Radioanal Nucl Chem 298(2):923–930

    Article  Google Scholar 

  44. Su S, Liu Q, Liu J et al (2017) Enhancing adsorption of U(VI) onto EDTA modified L. cylindrica using epichlorohydrin and ethylenediamine as a bridge. Sci Rep 7:44156. https://doi.org/10.1038/srep44156

    Article  ADS  Google Scholar 

  45. Dzyazko YS, Ponomareva LN, Volfkovich YM et al (2012) Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Russ J Phys Chem 86(6):913–919

    Article  Google Scholar 

  46. Dzyazko YS, Ponomaryova LN, Volfkovich YM et al (2014) Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties. Microporous Mesoporous Mater 198:55–62

    Article  Google Scholar 

  47. Myronchuk VG, Dzyazko YS, Zmievskii YG et al (2016) Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica 47:153–165

    Article  Google Scholar 

  48. Dzyazko YS, Volfkovich YM, Ponomaryova LN et al (2016) Composite ion-exchangers based on flexible resin containing zirconium hydrophosphate for electromembrane separation. J Nanosci Technol 2(1):43–49

    Google Scholar 

  49. Cormelis R, Caruso JA, Crews H et al (2005) Handbook of elemental speciation II. Species in the environment, food, medicine and occupational health. Wiley, Chichester

    Book  Google Scholar 

  50. Amphlett CB (1964) Inorganic ion exchangers. Elsevier, Amsterdam

    Google Scholar 

  51. Dzyazko YS, Rozhdestvenskaya LM, Vasilyuk SL et al (2009) Electrodeionization of Cr(VI)-containing solution. Part I: chromium transport through granulated inorganic ion-exchanger. Chem Eng Commun 196(1–2):3–21

    Google Scholar 

  52. Maltseva TV, Kudelko EO, Belyakov VN (2009) Adsorption of Cu(II), Cd(II), Pb(II), Cr(VI) by double hydroxides on the basis of Al oxide and Zr, Sn, and Ti oxides. Russ J Phys Chem A 83(13):2336–2339

    Article  Google Scholar 

  53. Dzyaz'ko YS, Belyakov VN, Vasilyuk SL et al (2006) Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide. Russ J Appl Chem 79(5):769–773

    Article  Google Scholar 

  54. Dzyazko YS, Volfkovich YM, Sosenkin VE et al (2014) Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res Lett 9:271. https://doi.org/10.1186/1556-276X-9-271

    Article  ADS  Google Scholar 

  55. Marti-Calatayud MC, Garcia-Gabaldon M, Perez-Herranz V et al (2015) Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Adv 5:46348–46358

    Article  Google Scholar 

  56. Dzyazko YS, Rudenko AS, Yukhin YM et al (2014) Modification of ceramic membranes with inorganic sorbents. Application to electrodialytic recovery of Cr(VI) anions from multicomponent solution. Desalination 342:52–60

    Article  Google Scholar 

  57. Pang R, Li X, Li J et al (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332:60–66

    Article  Google Scholar 

  58. Dzyazko YS, Rozhdestvenska LM, Vasilyuk SL et al (2017) Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res Lett 12:438. https://doi.org/10.1186/s11671-017-2208-4

    Article  ADS  Google Scholar 

  59. Mal’tseva TV, Kolomiets EA, Vasilyuk SL (2017) Hybrid adsorbents based on hydrated oxides of Zr(IV), Ti(IV), Sn(IV), and Fe(III) for arsenic removal. J Water Chem Technol 39(4):214–219

    Article  Google Scholar 

  60. Kolomiets EA, Belyakov VN, Palchik AV et al (2017) Adsorption of arsenic by hybrid anion–exchanger based on titanium oxyhydrate. J Water Chem Technol 39(2):80–84

    Article  Google Scholar 

  61. Savvin SB (1961) Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements. Talanta 8:673–685

    Article  Google Scholar 

  62. Myerson AS (ed) (2002) Handbook of industrial crystallization. Butterworth-Heinemann, Woburn

    Google Scholar 

  63. Ostwald WF (1888) Zur Theorie der Lösungen. Z Phys Chem 2(1):36–37

    Google Scholar 

  64. Dzyazko YS, Ponomareva LN, Volfkovich YM et al (2013) Conducting properties of a gel ionite modified with zirconium hydrophosphate nanoparticles. Russ J Electrochem 49(3):209–215

    Article  Google Scholar 

  65. Kostrikin AV, Spiridonov FM, Komissarova LN (2010) On the structure and dehydration of hydrous zirconia and hafnia xerogels. Russ J Inorg Chem 55(6):866–875

    Article  Google Scholar 

  66. Helfferich F (1995) Ion exchange. Dover, New York

    Google Scholar 

  67. Lagergren S (1898) About the theory of so called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24(4):1–39

    Google Scholar 

  68. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perlova, O., Dzyazko, Y., Halutska, I., Perlova, N., Palchik, A. (2018). Anion Exchange Resin Modified with Nanoparticles of Hydrated Zirconium Dioxide for Sorption of Soluble U(VI) Compounds. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-91083-3_1

Download citation

Publish with us

Policies and ethics