• Maxime J. JacquetEmail author
Part of the Springer Theses book series (Springer Theses)


In this concluding chapter, we build upon the epistemology of analogue systems to gravity to explicate the place of the present work in the field. We sum up the main findings presented herein and look out to future developments in the field.


  1. 1.
    S.W. Hawking, Black hole explosions? Nature 248(5443), 30–31 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    W.G. Unruh, Experimental Black-Hole Evaporation? Phys. Rev. Lett. 46(21), 1351–1353 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    T. Jacobson, Black-hole evaporation and ultrashort distances. Phys. Rev. D 44, 1731–1739 (1991)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    W.G. Unruh, Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D 51, 2827–2838 (1995)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Corley, Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach. Phys. Rev. D 57, 6280–6291 (1998)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    W. Unruh, R. Schützhold. Universality of the Hawking effect. Phys. Rev. D, 71(2) (2005)Google Scholar
  8. 8.
    J. Steinhauer, Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12(10), 959–965 (2016)CrossRefGoogle Scholar
  9. 9.
    K.P.Y. Thebault. What can we learn from analogue experiment? arXiv:1610.05028 (2016)
  10. 10.
    M. Jacquet, F. König, Quantum vacuum emission from a refractive-index front. Phys. Rev. A 92(2) (2015)Google Scholar
  11. 11.
    S. Robertson, Integral method for the calculation of Hawking radiation in dispersive media ii. asymmetric asymptotics. Phys. Rev. E 90(5) (2014)Google Scholar
  12. 12.
    S. Robertson, U. Leonhardt, Integral method for the calculation of Hawking radiation in dispersive media. i. symmetric asymptotics. Phys. Rev. E 90(5) (2014)Google Scholar
  13. 13.
    G. Rousseaux, C. Mathis, P. Massa, T.G. Philbin, U. Leonhardt, Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect? New J. Phys. 10(5), 053015 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh, G.A. Lawrence, Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 106(2) (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations