Advertisement

Experimental Observation of Scattering at a Moving RIF

  • Maxime J. JacquetEmail author
Chapter
  • 266 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we present an experimental realisation of analogue gravity: we use an optical setup to create optical event horizons, and observe the classical effect of wave scattering (ruled by the scattering matrix introduced in Chap. 3 and calculated in Chap. 4) at these horizons.

Keywords

Negative Norm Modes Exit Slits Photonic Crystal Fiber (PCF) High Refractive Index Region Parallel Skyline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Fiber-Optical Analog of the Event Horizon. Science 319(5868), 1367–1370 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A. Choudhary, F. König, Efficient frequency shifting of dispersive waves at solitons. Opt. Express 20(5), 5538 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    G. Rousseaux, C. Mathis, P. Maïssa, Thomas G Philbin and Ulf Leonhardt. Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect? New J. Phys. 10(5), 053015 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh, G.A. Lawrence, Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 106(2) (2011)Google Scholar
  5. 5.
    L. Paul Euvé, G. Rousseaux, Génération non-linéaire d’harmoniques après une conversion linéaire en interaction houle-courant. In: XIVèmes Journées Nationales Génie Côtier—Génie Civil, ed. by D. Levacher, M. Sanchez et V.Rey (Editions Paralia CFL, Nantes, 2016), pp. 181–190Google Scholar
  6. 6.
    W.G. Unruh, Has hawking radiation been measured? Found. Phys. 44(5), 532–545 (2014)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    L.-P. Euvé, F. Michel, R. Parentani, T.G. Philbin, G. Rousseaux, Observation of noise correlated by the hawking effect in a water tank. Phys. Rev. Lett. 117, 121301 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    E. Rubino, J. McLenaghan, S.C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C.E. Kuklewicz, U. Leonhardt, F. König, D. Faccio, Negative-frequency resonant radiation. Phys. Rev. Lett. 108(25) (2012)Google Scholar
  9. 9.
    D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked ti:sapphire laser. Opt. Lett. 16(1), 42–44 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. McLenaghan, Negative frequency waves in optics: control and investigation of their generation and evolution. Ph.D. Thesis, University of St Andrews, St Andrews, 2014Google Scholar
  11. 11.
    P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    S. Robertson, Hawking radiation in dispersive media. Ph.D. Thesis, University of St Andrews, St Andrews, 2011Google Scholar
  13. 13.
    S. Robertson, U. Leonhardt, Frequency shifting at fiber-optical event horizons: the effect of raman deceleration. Phys. Rev. A 81, 063835 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    G.P. Agrawal, Nonlinear fiber optics. In: Quantum electronics–principles and applications, 4th edn. (Elsevier/Academic Press, Amsterdam; Boston, 2007)Google Scholar
  15. 15.
    E. Rubino, A. Lotti, F. Belgiorno, S.L. Cacciatori, A. Couairon, U. Leonhardt, D. Faccio, Soliton-induced relativistic-scattering and amplification. Sci. Rep. 2 (2012)Google Scholar
  16. 16.
    D. Bermudez, U. Leonhardt, Hawking spectrum for a fiber-optical analog of the event horizon. Phys. Rev. A, 93(5) (2016)Google Scholar
  17. 17.
    M. Jacquet, F. König, Quantum vacuum emission from a refractive-index front. Phys. Rev. A, 92(2) (2015)Google Scholar
  18. 18.
    S. Robertson, Integral method for the calculation of Hawking radiation in dispersive media. ii. asymmetric asymptotics. Phys. Rev. E 90(5) (2014)Google Scholar
  19. 19.
    S.W. Hawking, Black hole explosions? Nature 248(5443), 30–31 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, J. Steinhauer, Realization of a sonic black hole analog in a bose-einstein condensate. Phys. Rev. Lett. 105(24) (2010)Google Scholar
  21. 21.
    J. Steinhauer, Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12(10), 959–965 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Steinhauer, Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nat. Phys. 10(11), 864–869 (2014)CrossRefGoogle Scholar
  23. 23.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations