Negative Frequency at the Horizon pp 97-128 | Cite as
Analytics and Numerics
Chapter
First Online:
- 264 Downloads
Abstract
In this chapter, we present an analytical method to calculate the scattering matrix (which rules mode-mixing on the time-dependent curved spacetime) in all possible kinematic configurations identified in Chap. 3. That is, for all regimes of spacetime curvature than may be created in analogue gravity systems. We then calculate spectra of emission from the vacuum and focus our attention on analogue black hole emission.
References
- 1.T. Jacobson, Black-hole evaporation and ultrashort distances. Phys. Rev. D 44, 1731–1739 (1991)ADSMathSciNetCrossRefGoogle Scholar
- 2.W.G. Unruh, Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D 51, 2827–2838 (1995)ADSMathSciNetCrossRefGoogle Scholar
- 3.I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot, A. Fabbri, Numerical observation of hawking radiation from acoustic black holes in atomic bose einstein condensates. New J. Phys. 10(10), 103001 (2008)ADSCrossRefGoogle Scholar
- 4.S. Corley, Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach. Phys. Rev. D 57, 6280–6291 (1998)ADSMathSciNetCrossRefGoogle Scholar
- 5.U. Leonhardt, S. Robertson, Analytical theory of hawking radiation in dispersive media. New J. Phys. 14(5), 053003 (2012)ADSCrossRefGoogle Scholar
- 6.J. Macher, R. Parentani, Black/white hole radiation from dispersive theories. Phys. Rev. D 79(12) (2009)Google Scholar
- 7.S. Corley, T. Jacobson, Hawking spectrum and high frequency dispersion. Phys. Rev. D 54, 1568–1586 (1996)ADSCrossRefGoogle Scholar
- 8.S. Robertson, Hawking radiation in dispersive media. Ph.D. thesis, University of St Andrews, St Andrews, May 2011Google Scholar
- 9.S. Robertson, Integral method for the calculation of hawking radiation in dispersive media. II. Asymmetric asymptotics. Phys. Rev. E 90(5) (2014)Google Scholar
- 10.S. Robertson, U. Leonhardt, Integral method for the calculation of hawking radiation in dispersive media. I. Symmetric asymptotics. Phys. Rev. E 90(5) (2014)Google Scholar
- 11.S. Corley, Particle creation via high frequency dispersion. Phys. Rev. D 55, 6155–6161 (1997)ADSCrossRefGoogle Scholar
- 12.A. Recati, N. Pavloff, I. Carusotto, Bogoliubov theory of acoustic hawking radiation in bose-einstein condensates. Phys. Rev. A 80, 043603 (2009)ADSCrossRefGoogle Scholar
- 13.S. Finazzi, R. Parentani, Hawking radiation in dispersive theories, the two regimes. Phys. Rev. D 85(12) (2012)Google Scholar
- 14.S. Finazzi, I. Carusotto, Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse. Phys. Rev. A 87(2) (2013)Google Scholar
- 15.M. Jacquet, F. König, Quantum vacuum emission from a refractive-index front. Phys. Rev. A 92(2) (2015)Google Scholar
- 16.T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008)ADSCrossRefGoogle Scholar
- 17.F. Belgiorno, S.L. Cacciatori, F.D. Piazza, Hawking effect in dielectric media and the hopfield model. Phys. Rev. D 91(12) (2015)Google Scholar
- 18.M.F. Linder, R. Schützhold, W.G. Unruh, Derivation of hawking radiation in dispersive dielectric media. Phys. Rev. D 93(10) (2016)Google Scholar
- 19.D. Bermudez, U. Leonhardt, Hawking spectrum for a fiber-optical analog of the event horizon. Phys. Rev. A 93(5) (2016)Google Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018