Advertisement

Analytics and Numerics

  • Maxime J. JacquetEmail author
Chapter
  • 264 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we present an analytical method to calculate the scattering matrix (which rules mode-mixing on the time-dependent curved spacetime) in all possible kinematic configurations identified in Chap.  3. That is, for all regimes of spacetime curvature than may be created in analogue gravity systems. We then calculate spectra of emission from the vacuum and focus our attention on analogue black hole emission.

References

  1. 1.
    T. Jacobson, Black-hole evaporation and ultrashort distances. Phys. Rev. D 44, 1731–1739 (1991)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    W.G. Unruh, Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D 51, 2827–2838 (1995)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot, A. Fabbri, Numerical observation of hawking radiation from acoustic black holes in atomic bose einstein condensates. New J. Phys. 10(10), 103001 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    S. Corley, Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach. Phys. Rev. D 57, 6280–6291 (1998)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    U. Leonhardt, S. Robertson, Analytical theory of hawking radiation in dispersive media. New J. Phys. 14(5), 053003 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    J. Macher, R. Parentani, Black/white hole radiation from dispersive theories. Phys. Rev. D 79(12) (2009)Google Scholar
  7. 7.
    S. Corley, T. Jacobson, Hawking spectrum and high frequency dispersion. Phys. Rev. D 54, 1568–1586 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    S. Robertson, Hawking radiation in dispersive media. Ph.D. thesis, University of St Andrews, St Andrews, May 2011Google Scholar
  9. 9.
    S. Robertson, Integral method for the calculation of hawking radiation in dispersive media. II. Asymmetric asymptotics. Phys. Rev. E 90(5) (2014)Google Scholar
  10. 10.
    S. Robertson, U. Leonhardt, Integral method for the calculation of hawking radiation in dispersive media. I. Symmetric asymptotics. Phys. Rev. E 90(5) (2014)Google Scholar
  11. 11.
    S. Corley, Particle creation via high frequency dispersion. Phys. Rev. D 55, 6155–6161 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    A. Recati, N. Pavloff, I. Carusotto, Bogoliubov theory of acoustic hawking radiation in bose-einstein condensates. Phys. Rev. A 80, 043603 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    S. Finazzi, R. Parentani, Hawking radiation in dispersive theories, the two regimes. Phys. Rev. D 85(12) (2012)Google Scholar
  14. 14.
    S. Finazzi, I. Carusotto, Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse. Phys. Rev. A 87(2) (2013)Google Scholar
  15. 15.
    M. Jacquet, F. König, Quantum vacuum emission from a refractive-index front. Phys. Rev. A 92(2) (2015)Google Scholar
  16. 16.
    T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    F. Belgiorno, S.L. Cacciatori, F.D. Piazza, Hawking effect in dielectric media and the hopfield model. Phys. Rev. D 91(12) (2015)Google Scholar
  18. 18.
    M.F. Linder, R. Schützhold, W.G. Unruh, Derivation of hawking radiation in dispersive dielectric media. Phys. Rev. D 93(10) (2016)Google Scholar
  19. 19.
    D. Bermudez, U. Leonhardt, Hawking spectrum for a fiber-optical analog of the event horizon. Phys. Rev. A 93(5) (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations