Negative Frequency at the Horizon pp 49-95 | Cite as
Spontaneous Emission of Light Quanta from the Vacuum
- 276 Downloads
Abstract
In the previous chapter of this dissertation we used the classical theory of Physics that rules the dynamics of the Universe on large scales—General Relativity—to study the behaviour of spacetime around spherical bodies. We introduced the idea of black holes, regions of spacetime bounded by their event horizon from which nothing can escape. In this section, we will try to tie General Relativity with Thermodynamics—broadly speaking, the theory that rules the organization of the Universe. For this purpose, we will follow the arguments which scientists of the early 1970s had to contend with, and see how they found that these theories can be united at the event horizon of black holes. This will eventually lead us to call upon Quantum Physics to explain how black holes can be in a state of thermal equilibrium—thus introducing the concept of spontaneous emission of light quanta from the vacuum.
References
- 1.B. Carter, Republication of: black hole equilibrium states: part i analytic and geometric properties of the kerr solutions. Gen. Relat. Gravit. 41(12), 2873–2938 (2009)ADSCrossRefGoogle Scholar
- 2.P.C.W. Davies, Thermodynamics of black holes. Rep. Prog. Phys. 41 (1978)ADSCrossRefGoogle Scholar
- 3.N.D. Birrell, P.C.W. Davies, Quantum fields in curved space, repr edn. Cambridge monographs on mathematical physics. (Cambridge Univ. Press, Cambridge, 1994)Google Scholar
- 4.T. Jacobson, Introductory Lectures on Black Hole Thermodynamics (1996)Google Scholar
- 5.D. Lynden-Bell, R. Wood, A. Royal, The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 138(4), 495–525 (1968)ADSCrossRefGoogle Scholar
- 6.P.C.W. Davies. The Physics of Time Asymmetry. (University of California Press, Berkeley and Los Angeles, 1977). OCLC: 232966619Google Scholar
- 7.S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-time. Cambridge monographs on mathematical physics. (Cambridge Univ. Press, Cambridge, 21. printing edition, 2008). OCLC: 552219048Google Scholar
- 8.S.W. Hawking, Black holes in general relativity. Commun. Math. Phys. 25(2), 152–166 (1972)ADSMathSciNetCrossRefGoogle Scholar
- 9.S. Chandrasekhar, The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81 (1931)ADSCrossRefGoogle Scholar
- 10.R. Penrose, Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 252–276 (1969)ADSGoogle Scholar
- 11.G.W. Gibbons, Vacuum polarization and the spontaneous loss of charge by black holes. Commun. Math. Phys. 44(3), 245–264 (1975)ADSMathSciNetCrossRefGoogle Scholar
- 12.R. Penrose, G. Collapse, S.-T. Singularities, Phys. Rev. Lett. 14(3), 57–59 (1965)ADSMathSciNetCrossRefGoogle Scholar
- 13.J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)ADSMathSciNetCrossRefGoogle Scholar
- 14.H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985)zbMATHGoogle Scholar
- 15.J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7(8), 2333–2346 (1973)ADSMathSciNetCrossRefGoogle Scholar
- 16.L. Smarr, Mass formula for kerr black holes. Phys. Rev. Lett. 30, 71–73 (1973)ADSCrossRefGoogle Scholar
- 17.S.W. Hawking, Black holes and thermodynamics. Phys. Rev. D 13(2), 191–197 (1976)ADSCrossRefGoogle Scholar
- 18.R. Penrose, Black holes and gravitational theory. Nature 236(5347), 377–380 (1972)ADSCrossRefGoogle Scholar
- 19.Y.B. Zel’dovich, Pis’ma. Zh. Eksp. Teor. Fiz 12, 443 (1970)Google Scholar
- 20.C.W. Misner, Interpretation of gravitational-wave observations. Phys. Rev. Lett. 28(15), 994–997 (1972)ADSCrossRefGoogle Scholar
- 21.Y.B. Zel’dovich, Amplification of cylindrical electromagnetic waves reflected from a rotating body. Sov. Phys. JETP 35(6) (1972)Google Scholar
- 22.A.A. Starobinski, Y.B. Zel’dovich, Pis’ma. Zh. Eksp. Teor. Fiz 26, 373 (1977)Google Scholar
- 23.W.G. Unruh, Origin of the particles in black-hole evaporation. Phys. Rev. D 15(2), 365–369 (1977)ADSCrossRefGoogle Scholar
- 24.K.S. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy. (1994). OCLC: 28147932Google Scholar
- 25.S.W. Hawking, Black hole explosions? Nature 248(5443), 30–31 (1974)ADSCrossRefGoogle Scholar
- 26.S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)ADSMathSciNetCrossRefGoogle Scholar
- 27.C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation. (W.H. Freeman, San Francisco, 1973)Google Scholar
- 28.L. Parker, Probability distribution of particles created by a black hole. Phys. Rev. D 12(6), 1519–1525 (1975)ADSCrossRefGoogle Scholar
- 29.L. Parker, Cincinnati, Proceedings, Asymptotic Structure of Space-time (1976), pp. 107–226CrossRefGoogle Scholar
- 30.N.N. Bogoljubov, On a new method in the theory of superconductivity. J. Exp. Theor. Phys. 34(1) (1958)Google Scholar
- 31.S. Corley, T. Jacobson, Hawking spectrum and high frequency dispersion. Phys. Rev. D 54(2), 1568–1586 (1996)ADSCrossRefGoogle Scholar
- 32.T. Jacobson, Black-hole evaporation and ultrashort distances. Phys. Rev. D 44(6), 1731–1739 (1991)ADSMathSciNetCrossRefGoogle Scholar
- 33.P.C.W. Davies, S.A. Fulling, W.G. Unruh, Energy-momentum tensor near an evaporating black hole. Phys. Rev. D 13(10), 2720–2723 (1976)ADSCrossRefGoogle Scholar
- 34.T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008)ADSCrossRefGoogle Scholar
- 35.W.G. Unruh, Experimental black-hole evaporation? Phys. Rev. Lett. 46(21), 1351–1353 (1981)ADSCrossRefGoogle Scholar
- 36.A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)ADSCrossRefGoogle Scholar
- 37.F. Belgiorno, S.L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V.G. Sala, D. Faccio, Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105(20) (2010)Google Scholar
- 38.D. Bermudez, U. Leonhardt, Hawking spectrum for a fiber-optical analog of the event horizon. Phys. Rev. A 93(5) (2016)Google Scholar
- 39.K.E. Webb, M. Erkintalo, Y. Xu, N.G.R. Broderick, J.M. Dudley, G. Genty, S.G. Murdoch, Nonlinear optics of fibre event horizons. Nat. Commun. 5, 4969 (2014)ADSCrossRefGoogle Scholar
- 40.E. Rubino, F. Belgiorno, S.L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, V.G. Sala, M. Kolesik, D. Faccio, Experimental evidence of analogue hawking radiation from ultrashort laser pulse filaments. New J. Phys. 13(8), 085005 (2011)ADSCrossRefGoogle Scholar
- 41.E. Rubino, A. Lotti, F. Belgiorno, S.L. Cacciatori, A. Couairon, U. Leonhardt, D. Faccio, Soliton-induced relativistic-scattering and amplification. Sci. Rep. 2 (2012)Google Scholar
- 42.M. Petev, N. Westerberg, D. Moss, E. Rubino, C. Rimoldi, S.L. Cacciatori, F. Belgiorno, D. Faccio, Blackbody emission from light interacting with an effective moving dispersive medium. Phys. Rev. Lett. 111(4) (2013)Google Scholar
- 43.S. Liberati, A. Prain, M. Visser, Quantum vacuum radiation in optical glass. Phys. Rev. D 85(8) (2012)Google Scholar
- 44.F. Belgiorno, S.L. Cacciatori, F.D. Piazza, Perturbative photon production in a dispersive medium. Eur. Phys. J. D 68(5) (2014)Google Scholar
- 45.S.F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X.L. Zeng, A. Kudlinski, Optical event horizons from the collision of a soliton and its own dispersive wave. Phys. Rev. A 92(2) (2015)Google Scholar
- 46.D. Faccio, S. Cacciatori, V. Gorini, V.G. Sala, A. Averchi, A. Lotti, M. Kolesik, J.V. Moloney, Analogue gravity and ultrashort laser pulse filamentation. EPL (Europhys. Lett.) 89(3), 34004 (2010)ADSCrossRefGoogle Scholar
- 47.S. Finazzi, I. Carusotto, Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse. Phys. Rev. A 87(2) (2013)Google Scholar
- 48.F. Belgiorno, S.L. Cacciatori, F.D. Piazza, Hawking effect in dielectric media and the hopfield model. Phys. Rev. D 91(12) (2015)Google Scholar
- 49.M.F. Linder, R. Schützhold, W.G. Unruh, Derivation of hawking radiation in dispersive dielectric media. Phys. Rev. D 93(10) (2016)Google Scholar
- 50.S. Finazzi, I. Carusotto, Kinematic study of the effect of dispersion in quantum vacuum emission from strong laser pulses. Eur. Phys. J. Plus 127(7) (2012)Google Scholar
- 51.S. Finazzi, I. Carusotto, Spontaneous quantum emission from analog white holes in a nonlinear optical medium. Phys. Rev. A 89(5) (2014)Google Scholar
- 52.S. Robertson, Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics. Phys. Rev. E 90(5) (2014)Google Scholar
- 53.M. Jacquet, F. König, Quantum vacuum emission from a refractive-index front. Phys. Rev. A 92(2) (2015)Google Scholar
- 54.J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112(5), 1555–1567 (1958)ADSCrossRefGoogle Scholar
- 55.R. Schützhold, G. Plunien, G. Soff, Dielectric black hole analogs. Phys. Rev. Lett. 88, 061101 (2002)ADSCrossRefGoogle Scholar
- 56.U. Fano, Atomic theory of electromagnetic interactions in dense materials. Phys. Rev. 103(5), 1202–1218 (1956)ADSCrossRefGoogle Scholar
- 57.S.I. Pekar, Theory of electromagnetic waves in a crystal with excitons. J. Phys. Chem. Solids 5(1–2), 11–22 (1958)ADSCrossRefGoogle Scholar
- 58.C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, NJ, 2005)zbMATHGoogle Scholar
- 59.C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics. Physics textbook. (Wiley, Weinheim, nachdr. edition, 2004). OCLC: 254806943Google Scholar
- 60.E. Noether, Invariante variationsprobleme. Nachr. von der Ges. der Wiss zu Gött. Math.-Phys. Kl. 1918, 235–257 (1918)Google Scholar
- 61.M. Jacquet, Quantum vacuum emission at the event horizon. M.Sc. thesis, University of St Andrews, St Andrews, 2013Google Scholar
- 62.S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh, G.A. Lawrence, Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 106(2) (2011)Google Scholar
- 63.G. Rousseaux, C. Mathis, P. Maïssa, T.G. Philbin, U. Leonhardt, Observation of negative-frequency waves in a water tank: a classical analogue to the hawking effect? New J. Phys. 10(5), 053015 (2008)ADSCrossRefGoogle Scholar
- 64.E. Rubino, J. McLenaghan, S.C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C.E. Kuklewicz, U. Leonhardt, F. König, D. Faccio, Negative-frequency resonant radiation. Phys. Rev. Lett. 108(25) (2012)Google Scholar
- 65.J.S. McLenaghan, Negative frequency waves in optics: control and investigation of their generation and evolution. Ph.D. thesis, University of St Andrews, St Andrews, 2014Google Scholar
- 66.J. McLenaghan, F. König, Few-cycle fiber pulse compression and evolution of negative resonant radiation. New J. Phys. 16(6), 063017 (2014)ADSCrossRefGoogle Scholar
- 67.S.M. Barnett, B. Huttner, R. Loudon, Spontaneous emission in absorbing dielectric media. Phys. Rev. Lett. 68(25), 3698–3701 (1992)ADSCrossRefGoogle Scholar
- 68.B. Huttner, J.J. Baumberg, S.M. Barnett, Canonical quantization of light in a linear dielectric. Europhys. Lett. (EPL) 16(2), 177–182 (1991)ADSCrossRefGoogle Scholar
- 69.B. Huttner, S.M. Barnett, Dispersion and loss in a hopfield dielectric. Europhys. Lett. (EPL) 18(6), 487–492 (1992)ADSCrossRefGoogle Scholar
- 70.R. Matloob, R. Loudon, S.M. Barnett, J. Jeffers, Electromagnetic field quantization in absorbing dielectrics. Phys. Rev. A 52(6), 4823–4838 (1995)ADSCrossRefGoogle Scholar
- 71.S.M. Barnett, R. Matloob, R. Loudon, Quantum theory of a dielectric-vacuum interface in one dimension. J. Mod Opt. 42(6), 1165–1169 (1995)ADSCrossRefGoogle Scholar
- 72.D.J. Santos, R. Loudon, Electromagnetic-field quantization in inhomogeneous and dispersive one-dimensional systems. Phys. Rev. A 52(2), 1538–1549 (1995)ADSCrossRefGoogle Scholar
- 73.J. Macher, R. Parentani, Black/white hole radiation from dispersive theories. Phys. Rev. D 79(12) (2009)Google Scholar