Spontaneous Emission of Light Quanta from the Vacuum

  • Maxime J. JacquetEmail author
Part of the Springer Theses book series (Springer Theses)


In the previous chapter of this dissertation we used the classical theory of Physics that rules the dynamics of the Universe on large scales—General Relativity—to study the behaviour of spacetime around spherical bodies. We introduced the idea of black holes, regions of spacetime bounded by their event horizon from which nothing can escape. In this section, we will try to tie General Relativity with Thermodynamics—broadly speaking, the theory that rules the organization of the Universe. For this purpose, we will follow the arguments which scientists of the early 1970s had to contend with, and see how they found that these theories can be united at the event horizon of black holes. This will eventually lead us to call upon Quantum Physics to explain how black holes can be in a state of thermal equilibrium—thus introducing the concept of spontaneous emission of light quanta from the vacuum.


  1. 1.
    B. Carter, Republication of: black hole equilibrium states: part i analytic and geometric properties of the kerr solutions. Gen. Relat. Gravit. 41(12), 2873–2938 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    P.C.W. Davies, Thermodynamics of black holes. Rep. Prog. Phys. 41 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    N.D. Birrell, P.C.W. Davies, Quantum fields in curved space, repr edn. Cambridge monographs on mathematical physics. (Cambridge Univ. Press, Cambridge, 1994)Google Scholar
  4. 4.
    T. Jacobson, Introductory Lectures on Black Hole Thermodynamics (1996)Google Scholar
  5. 5.
    D. Lynden-Bell, R. Wood, A. Royal, The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 138(4), 495–525 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    P.C.W. Davies. The Physics of Time Asymmetry. (University of California Press, Berkeley and Los Angeles, 1977). OCLC: 232966619Google Scholar
  7. 7.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-time. Cambridge monographs on mathematical physics. (Cambridge Univ. Press, Cambridge, 21. printing edition, 2008). OCLC: 552219048Google Scholar
  8. 8.
    S.W. Hawking, Black holes in general relativity. Commun. Math. Phys. 25(2), 152–166 (1972)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Chandrasekhar, The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81 (1931)ADSCrossRefGoogle Scholar
  10. 10.
    R. Penrose, Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 252–276 (1969)ADSGoogle Scholar
  11. 11.
    G.W. Gibbons, Vacuum polarization and the spontaneous loss of charge by black holes. Commun. Math. Phys. 44(3), 245–264 (1975)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Penrose, G. Collapse, S.-T. Singularities, Phys. Rev. Lett. 14(3), 57–59 (1965)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985)zbMATHGoogle Scholar
  15. 15.
    J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7(8), 2333–2346 (1973)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Smarr, Mass formula for kerr black holes. Phys. Rev. Lett. 30, 71–73 (1973)ADSCrossRefGoogle Scholar
  17. 17.
    S.W. Hawking, Black holes and thermodynamics. Phys. Rev. D 13(2), 191–197 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    R. Penrose, Black holes and gravitational theory. Nature 236(5347), 377–380 (1972)ADSCrossRefGoogle Scholar
  19. 19.
    Y.B. Zel’dovich, Pis’ma. Zh. Eksp. Teor. Fiz 12, 443 (1970)Google Scholar
  20. 20.
    C.W. Misner, Interpretation of gravitational-wave observations. Phys. Rev. Lett. 28(15), 994–997 (1972)ADSCrossRefGoogle Scholar
  21. 21.
    Y.B. Zel’dovich, Amplification of cylindrical electromagnetic waves reflected from a rotating body. Sov. Phys. JETP 35(6) (1972)Google Scholar
  22. 22.
    A.A. Starobinski, Y.B. Zel’dovich, Pis’ma. Zh. Eksp. Teor. Fiz 26, 373 (1977)Google Scholar
  23. 23.
    W.G. Unruh, Origin of the particles in black-hole evaporation. Phys. Rev. D 15(2), 365–369 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    K.S. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy. (1994). OCLC: 28147932Google Scholar
  25. 25.
    S.W. Hawking, Black hole explosions? Nature 248(5443), 30–31 (1974)ADSCrossRefGoogle Scholar
  26. 26.
    S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation. (W.H. Freeman, San Francisco, 1973)Google Scholar
  28. 28.
    L. Parker, Probability distribution of particles created by a black hole. Phys. Rev. D 12(6), 1519–1525 (1975)ADSCrossRefGoogle Scholar
  29. 29.
    L. Parker, Cincinnati, Proceedings, Asymptotic Structure of Space-time (1976), pp. 107–226CrossRefGoogle Scholar
  30. 30.
    N.N. Bogoljubov, On a new method in the theory of superconductivity. J. Exp. Theor. Phys. 34(1) (1958)Google Scholar
  31. 31.
    S. Corley, T. Jacobson, Hawking spectrum and high frequency dispersion. Phys. Rev. D 54(2), 1568–1586 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    T. Jacobson, Black-hole evaporation and ultrashort distances. Phys. Rev. D 44(6), 1731–1739 (1991)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    P.C.W. Davies, S.A. Fulling, W.G. Unruh, Energy-momentum tensor near an evaporating black hole. Phys. Rev. D 13(10), 2720–2723 (1976)ADSCrossRefGoogle Scholar
  34. 34.
    T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    W.G. Unruh, Experimental black-hole evaporation? Phys. Rev. Lett. 46(21), 1351–1353 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)ADSCrossRefGoogle Scholar
  37. 37.
    F. Belgiorno, S.L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V.G. Sala, D. Faccio, Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105(20) (2010)Google Scholar
  38. 38.
    D. Bermudez, U. Leonhardt, Hawking spectrum for a fiber-optical analog of the event horizon. Phys. Rev. A 93(5) (2016)Google Scholar
  39. 39.
    K.E. Webb, M. Erkintalo, Y. Xu, N.G.R. Broderick, J.M. Dudley, G. Genty, S.G. Murdoch, Nonlinear optics of fibre event horizons. Nat. Commun. 5, 4969 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    E. Rubino, F. Belgiorno, S.L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, V.G. Sala, M. Kolesik, D. Faccio, Experimental evidence of analogue hawking radiation from ultrashort laser pulse filaments. New J. Phys. 13(8), 085005 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    E. Rubino, A. Lotti, F. Belgiorno, S.L. Cacciatori, A. Couairon, U. Leonhardt, D. Faccio, Soliton-induced relativistic-scattering and amplification. Sci. Rep. 2 (2012)Google Scholar
  42. 42.
    M. Petev, N. Westerberg, D. Moss, E. Rubino, C. Rimoldi, S.L. Cacciatori, F. Belgiorno, D. Faccio, Blackbody emission from light interacting with an effective moving dispersive medium. Phys. Rev. Lett. 111(4) (2013)Google Scholar
  43. 43.
    S. Liberati, A. Prain, M. Visser, Quantum vacuum radiation in optical glass. Phys. Rev. D 85(8) (2012)Google Scholar
  44. 44.
    F. Belgiorno, S.L. Cacciatori, F.D. Piazza, Perturbative photon production in a dispersive medium. Eur. Phys. J. D 68(5) (2014)Google Scholar
  45. 45.
    S.F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X.L. Zeng, A. Kudlinski, Optical event horizons from the collision of a soliton and its own dispersive wave. Phys. Rev. A 92(2) (2015)Google Scholar
  46. 46.
    D. Faccio, S. Cacciatori, V. Gorini, V.G. Sala, A. Averchi, A. Lotti, M. Kolesik, J.V. Moloney, Analogue gravity and ultrashort laser pulse filamentation. EPL (Europhys. Lett.) 89(3), 34004 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    S. Finazzi, I. Carusotto, Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse. Phys. Rev. A 87(2) (2013)Google Scholar
  48. 48.
    F. Belgiorno, S.L. Cacciatori, F.D. Piazza, Hawking effect in dielectric media and the hopfield model. Phys. Rev. D 91(12) (2015)Google Scholar
  49. 49.
    M.F. Linder, R. Schützhold, W.G. Unruh, Derivation of hawking radiation in dispersive dielectric media. Phys. Rev. D 93(10) (2016)Google Scholar
  50. 50.
    S. Finazzi, I. Carusotto, Kinematic study of the effect of dispersion in quantum vacuum emission from strong laser pulses. Eur. Phys. J. Plus 127(7) (2012)Google Scholar
  51. 51.
    S. Finazzi, I. Carusotto, Spontaneous quantum emission from analog white holes in a nonlinear optical medium. Phys. Rev. A 89(5) (2014)Google Scholar
  52. 52.
    S. Robertson, Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics. Phys. Rev. E 90(5) (2014)Google Scholar
  53. 53.
    M. Jacquet, F. König, Quantum vacuum emission from a refractive-index front. Phys. Rev. A 92(2) (2015)Google Scholar
  54. 54.
    J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112(5), 1555–1567 (1958)ADSCrossRefGoogle Scholar
  55. 55.
    R. Schützhold, G. Plunien, G. Soff, Dielectric black hole analogs. Phys. Rev. Lett. 88, 061101 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    U. Fano, Atomic theory of electromagnetic interactions in dense materials. Phys. Rev. 103(5), 1202–1218 (1956)ADSCrossRefGoogle Scholar
  57. 57.
    S.I. Pekar, Theory of electromagnetic waves in a crystal with excitons. J. Phys. Chem. Solids 5(1–2), 11–22 (1958)ADSCrossRefGoogle Scholar
  58. 58.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, NJ, 2005)zbMATHGoogle Scholar
  59. 59.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics. Physics textbook. (Wiley, Weinheim, nachdr. edition, 2004). OCLC: 254806943Google Scholar
  60. 60.
    E. Noether, Invariante variationsprobleme. Nachr. von der Ges. der Wiss zu Gött. Math.-Phys. Kl. 1918, 235–257 (1918)Google Scholar
  61. 61.
    M. Jacquet, Quantum vacuum emission at the event horizon. M.Sc. thesis, University of St Andrews, St Andrews, 2013Google Scholar
  62. 62.
    S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh, G.A. Lawrence, Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 106(2) (2011)Google Scholar
  63. 63.
    G. Rousseaux, C. Mathis, P. Maïssa, T.G. Philbin, U. Leonhardt, Observation of negative-frequency waves in a water tank: a classical analogue to the hawking effect? New J. Phys. 10(5), 053015 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    E. Rubino, J. McLenaghan, S.C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C.E. Kuklewicz, U. Leonhardt, F. König, D. Faccio, Negative-frequency resonant radiation. Phys. Rev. Lett. 108(25) (2012)Google Scholar
  65. 65.
    J.S. McLenaghan, Negative frequency waves in optics: control and investigation of their generation and evolution. Ph.D. thesis, University of St Andrews, St Andrews, 2014Google Scholar
  66. 66.
    J. McLenaghan, F. König, Few-cycle fiber pulse compression and evolution of negative resonant radiation. New J. Phys. 16(6), 063017 (2014)ADSCrossRefGoogle Scholar
  67. 67.
    S.M. Barnett, B. Huttner, R. Loudon, Spontaneous emission in absorbing dielectric media. Phys. Rev. Lett. 68(25), 3698–3701 (1992)ADSCrossRefGoogle Scholar
  68. 68.
    B. Huttner, J.J. Baumberg, S.M. Barnett, Canonical quantization of light in a linear dielectric. Europhys. Lett. (EPL) 16(2), 177–182 (1991)ADSCrossRefGoogle Scholar
  69. 69.
    B. Huttner, S.M. Barnett, Dispersion and loss in a hopfield dielectric. Europhys. Lett. (EPL) 18(6), 487–492 (1992)ADSCrossRefGoogle Scholar
  70. 70.
    R. Matloob, R. Loudon, S.M. Barnett, J. Jeffers, Electromagnetic field quantization in absorbing dielectrics. Phys. Rev. A 52(6), 4823–4838 (1995)ADSCrossRefGoogle Scholar
  71. 71.
    S.M. Barnett, R. Matloob, R. Loudon, Quantum theory of a dielectric-vacuum interface in one dimension. J. Mod Opt. 42(6), 1165–1169 (1995)ADSCrossRefGoogle Scholar
  72. 72.
    D.J. Santos, R. Loudon, Electromagnetic-field quantization in inhomogeneous and dispersive one-dimensional systems. Phys. Rev. A 52(2), 1538–1549 (1995)ADSCrossRefGoogle Scholar
  73. 73.
    J. Macher, R. Parentani, Black/white hole radiation from dispersive theories. Phys. Rev. D 79(12) (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations