Theory of Spacetime Curvature in Optical Fibres

  • Maxime J. JacquetEmail author
Part of the Springer Theses book series (Springer Theses)


From astrophysics to the laboratory, and more precisely to optical fibre systems, this chapter will present the fundamentals of the science of analogue spacetimes realisations. Leaving the concepts of quantum field theory—in curved spacetime and for light-matter interaction—that describe the spontaneous creation of light from the vacuum to a later chapter, here we focus on classical physics in its most modern form.


Dumb Holes Weak Probe Wave Event Horizon White Hole Horizon Sonic Horizon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation. (W.H. Freeman, San Francisco, 1973)Google Scholar
  2. 2.
    A. Einstein. Die feldgleichungen der gravitation, in Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1915), pp. 844–847Google Scholar
  3. 3.
    A. Einstein, Die grundlage der allgemeinen relativitatstheorie. Ann. der Phys. 354(7), 769–822 (1916)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Choquet-Bruhat, Introduction to General Relativity, Black Holes, and Cosmology (Oxford University Press, Oxford, first edition edition, 2015)Google Scholar
  5. 5.
    K. Schwarzschild, Uber das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. Sitz. der K. Preuss. Akad. der Wiss. 7, 189–196 (1916)Google Scholar
  6. 6.
    Nature a comparison of whitehead’s and einstein’s formulae. 113(2832), 192–192 (1924)Google Scholar
  7. 7.
    G. Lemaitre, L’Univers en expansion. Ann. de la Soc. Sci. de Brux. A53(51) (1933)Google Scholar
  8. 8.
    D. Finkelstein, Past-future asymmetry of the gravitational field of a point particle. Phys. Rev. 110(4), 965–967 (1958)ADSCrossRefGoogle Scholar
  9. 9.
    R. Penrose, Black holes and gravitational theory. Nature 236(5347), 377–380 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    E.F. Taylor, J.A. Wheeler, Exploring Black Holes: Introduction to General Relativity. (Addison Wesley Longman, San Francisco, 2000)Google Scholar
  11. 11.
    P. Painleve, La mecanique classique et la theorie de la relativite. C. R. Acad. Sci (Paris) 173, 670–680 (1921)ADSzbMATHGoogle Scholar
  12. 12.
    A. Gullstrand, Allgemeine lesung des statischen einkerperproblems in der einsteinschen gravitationstheorie. Arkiv. Mat. Astron. Fys. 16(8), 1–15 (1922)zbMATHGoogle Scholar
  13. 13.
    J.S. Hamilton, P. Lisle, The river model of black holes (2006)Google Scholar
  14. 14.
    W.G. Unruh, Experimental black-hole evaporation? Phys. Rev. Lett. 46(21), 1351–1353 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    L.D. Landau, E.M. Lifšic, Fluid Mechanics. Number v. 6 in Course of theoretical physics. 2nd edn. (Pergamon Press, Oxford, England; New York, 2nd english edn., rev edition, 1987)Google Scholar
  16. 16.
    M. Visser, Acoustic black holes: horizons, ergospheres and hawking radiation. Class. Quantum Gravity 15(6), 1767 (1998)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J.C. Maxwell, On physical lines of force. Phil. Mag. 11, 11611–175; 281–291; 338–348 (1861)Google Scholar
  18. 18.
    J.C. Maxwell, On physical lines of force. Phil. Mag. 12(12–24), 85–95 (1862)CrossRefGoogle Scholar
  19. 19.
    J.C. Maxwell, A Treatise on Electricity and Magnetism. (Clarendon Press edition, 1873)Google Scholar
  20. 20.
    G. Genty, M. Narhi, C. Amiot, M.J. Jacquet, Supercontinuum generation in optical fibers, in Proceedings of the International School of Physics Enrico Fermi (2016), pp. 233–261Google Scholar
  21. 21.
    S. Robertson, Hawking radiation in dispersive media. Ph.D. thesis, University of St Andrews, St Andrews, 2011Google Scholar
  22. 22.
    M. Jacquet, Quantum Vacuum emission at the event horizon. M.Sc. thesis, University of St Andrews, St Andrews, 2013Google Scholar
  23. 23.
    T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    A. Choudhary, F. König, Efficient frequency shifting of dispersive waves at solitons. Opt. Express 20(5), 5538 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    R. Schützhold, W.G. Unruh, Hawking radiation in an electromagnetic waveguide? Phys. Rev. Lett. 95, 031301 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    R. Brout, S. Massar, R. Parentani, P. Spindel, A primer for black hole quantum physics. Phys. Rep. 260(6), 329–446 (1995)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, repr edn. Cambridge monographs on mathematical physics. (Cambridge Univ. Press, Cambridge, 1994)Google Scholar
  28. 28.
    E. Rubino, J. McLenaghan, S.C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C.E. Kuklewicz, U. Leonhardt, F. König, D. Faccio, Negative-frequency resonant radiation. Phys. Rev. Lett. 108(25) (2012)Google Scholar
  29. 29.
    M. Conforti, A. Marini, T.X. Tran, D. Faccio, F. Biancalana, Interaction between optical fields and their conjugates in nonlinear media. Opt. Express 21(25), 31239 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    N. Akhmediev, M. Karlsson, Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    P.K.A. Wai, C.R. Menyuk, Y.C. Lee, H.H. Chen, Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett. 11(7), 464–466 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    D.V. Skryabin, A.V. Yulin, Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers. Phys. Rev. E 72, 016619 (2005)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    J.S. McLenaghan, Negative frequency waves in optics: control and investigation of their generation and evolution. Ph.D. thesis, University of St Andrews, St Andrews, 2014Google Scholar
  34. 34.
    U. Leonhardt, P. Piwnicki, Optics of nonuniformly moving media. Phys. Rev. A 60(6), 4301–4312 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    U. Leonhardt, T.G. Philbin, The case for artificial black holes. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 366(1877), 2851–2857 (2008)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    D. Faccio, S. Cacciatori, V. Gorini, V.G. Sala, A. Averchi, A. Lotti, M. Kolesik, J.V. Moloney, Analogue gravity and ultrashort laser pulse filamentation. EPL (Europhys. Lett.) 89(3), 34004 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    M.F. Linder, R. Schützhold, W.G. Unruh, Derivation of hawking radiation in dispersive dielectric media. Phys. Rev. D 93(10) (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations