Advertisement

Introduction

  • Maxime J. JacquetEmail author
Chapter
  • 268 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Waves in media can be made to propagate on an effectively curved spacetime. Such analogue spacetimes are curved Lorentzian manifolds which enable the study of some features of gravity in the laboratory. In this introductory chapter, we present the fundamental arguments supporting the science of analogue gravity, whose necessity we motivate by the idea to observe and better understand the Hawking effect in such systems.

References

  1. 1.
    A. Einstein, Die feldgleichungen der gravitation, in Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1915), pp. 844–847Google Scholar
  2. 2.
    A. Einstein, Die grundlage der allgemeinen relativitatstheorie. Ann. der Phys. 354(7), 769–822 (1916)ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Maxwell, On physical lines of force. Phil. Mag. 11, 11611–175; 281–291; 338–348 (1861)Google Scholar
  4. 4.
    J.C. Maxwell, On physical lines of force. Phil. Mag. 12(12–24), 85–95 (1862)Google Scholar
  5. 5.
    J.C. Maxwell, A Treatise on Electricity and Magnetism. (Clarendon press edition, 1873)Google Scholar
  6. 6.
    W.G. Unruh, Experimental black-hole evaporation? Phys. Rev. Lett. 46(21), 1351–1353 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    S.W. Hawking, Black hole explosions? Nature 248(5443), 30–31 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation. (W.H. Freeman, San Francisco, 1973)Google Scholar
  9. 9.
    R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14(3), 57–59 (1965)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    LIGO scientific collaboration and virgo collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)Google Scholar
  11. 11.
    J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7(8), 2333–2346 (1973)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    E. Rubino, J. McLenaghan, S.C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C.E. Kuklewicz, U. Leonhardt, F. König, D. Faccio, Negative-frequency resonant radiation. Phys. Rev. Lett. 108(25) (2012)Google Scholar
  15. 15.
    G.E. Volovik. The Universe in a Helium Droplet. Number 117 in International series of monographs on physics (Oxford University Press, Oxford, 2009) OCLC: 636215451Google Scholar
  16. 16.
    G. Rousseaux, C. Mathis, P. Massa, T.G. Philbin, U. Leonhardt, Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect? New J. Phys. 10(5), 053015 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh, G.A. Lawrence, Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 106(2) (2011)Google Scholar
  18. 18.
    O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, J. Steinhauer, Realization of a sonic black hole analog in a bose-einstein condensate. Phys. Rev. Lett. 105(24) (2010)Google Scholar
  19. 19.
    U. Leonhardt, A laboratory analogue of the event horizon using slow light in an atomic medium. Nature 415(6870), 406–409 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    R. Schützhold, G. Plunien, G. Soff, Dielectric black hole analogs. Phys. Rev. Lett. 88, 061101 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    R. Schützhold, W.G. Unruh, Hawking radiation in an electromagnetic waveguide? Phys. Rev. Lett. 95, 031301 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    P.D. Nation, M.P. Blencowe, A.J. Rimberg, E. Buks, Analogue hawking radiation in a dc-squid array transmission line. Phys. Rev. Lett. 103, 087004 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    J. Steinhauer, Observation of quantum hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12(10), 959–965 (2016)CrossRefGoogle Scholar
  25. 25.
    L.-P. Euvé, F. Michel, R. Parentani, T.G. Philbin, G. Rousseaux, Observation of noise correlated by the hawking effect in a water tank. Phys. Rev. Lett. 117, 121301 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    W.G. Unruh, Experimental black hole evaporation. Phys. Today (2016)Google Scholar
  27. 27.
    E. Léo-Paul, G. Rousseaux, Génération non-linéaire d’harmoniques après une conversion linéaire en interaction houle-courant, in XIVèmes Journées Nationales Génie Côtier Génie Civil, ed. by D. Levacher, M. Sanchez et, V. Rey (Editions Paralia CFL, Nantes, 2016), pp. 181–190Google Scholar
  28. 28.
    F. Michel, J.-F. Coupechoux, R. Parentani, Phonon spectrum and correlations in a transonic flow of an atomic bose gas. Phys. Rev. D 94(8) (2016)Google Scholar
  29. 29.
    U. Leonhardt, Questioning the recent observation of quantum Hawking radiation (2016), arXiv:1609.03803
  30. 30.
    A. Finke, P. Jain, S. Weinfurtner, On the observation of nonclassical excitations in bose einstein condensates. New J. Phys. 18(11), 113017 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    S. Finazzi, I. Carusotto, Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse. Phys. Rev. A 87(2) (2013)Google Scholar
  32. 32.
    M. Jacquet, F. König, Quantum vacuum emission from a refractive-index front. Phys. Rev. A 92(2) (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations