Skip to main content

Introduction

  • Chapter
  • First Online:
Negative Frequency at the Horizon

Part of the book series: Springer Theses ((Springer Theses))

  • 350 Accesses

Abstract

Waves in media can be made to propagate on an effectively curved spacetime. Such analogue spacetimes are curved Lorentzian manifolds which enable the study of some features of gravity in the laboratory. In this introductory chapter, we present the fundamental arguments supporting the science of analogue gravity, whose necessity we motivate by the idea to observe and better understand the Hawking effect in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the real spacetime structure in any Earth-based laboratory is approximately Minkowskian.

  2. 2.

    It is in fact in the process of articulating the latter paradigm that the former discovery was made.

  3. 3.

    In the Hawking effect, quantum vacuum fluctuations in these different modes are what causes the emission, see Chap. 3.

  4. 4.

    See 3.2.2 for details.

  5. 5.

    See Appendix A for further comments on this.

  6. 6.

    Such an equation as (1.12) can be used as the basis for a quantum mechanics capable of describing particle production and annihilation fully: the second quantised form of the theory. In this scheme, negative norm modes are associated with the creation operator of the field, whilst their positive norm counterparts are associated with the annihilation operator of the field.

  7. 7.

    The white hole is the time-reversed black-hole-solution to the Einstein’s equations, see 2.1.2.

References

  1. A. Einstein, Die feldgleichungen der gravitation, in Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1915), pp. 844–847

    Google Scholar 

  2. A. Einstein, Die grundlage der allgemeinen relativitatstheorie. Ann. der Phys. 354(7), 769–822 (1916)

    Article  ADS  Google Scholar 

  3. J.C. Maxwell, On physical lines of force. Phil. Mag. 11, 11611–175; 281–291; 338–348 (1861)

    Google Scholar 

  4. J.C. Maxwell, On physical lines of force. Phil. Mag. 12(12–24), 85–95 (1862)

    Google Scholar 

  5. J.C. Maxwell, A Treatise on Electricity and Magnetism. (Clarendon press edition, 1873)

    Google Scholar 

  6. W.G. Unruh, Experimental black-hole evaporation? Phys. Rev. Lett. 46(21), 1351–1353 (1981)

    Article  ADS  Google Scholar 

  7. S.W. Hawking, Black hole explosions? Nature 248(5443), 30–31 (1974)

    Article  ADS  Google Scholar 

  8. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation. (W.H. Freeman, San Francisco, 1973)

    Google Scholar 

  9. R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14(3), 57–59 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  10. LIGO scientific collaboration and virgo collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Google Scholar 

  11. J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7(8), 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  14. E. Rubino, J. McLenaghan, S.C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C.E. Kuklewicz, U. Leonhardt, F. König, D. Faccio, Negative-frequency resonant radiation. Phys. Rev. Lett. 108(25) (2012)

    Google Scholar 

  15. G.E. Volovik. The Universe in a Helium Droplet. Number 117 in International series of monographs on physics (Oxford University Press, Oxford, 2009) OCLC: 636215451

    Google Scholar 

  16. G. Rousseaux, C. Mathis, P. Massa, T.G. Philbin, U. Leonhardt, Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect? New J. Phys. 10(5), 053015 (2008)

    Article  ADS  Google Scholar 

  17. S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh, G.A. Lawrence, Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 106(2) (2011)

    Google Scholar 

  18. O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, J. Steinhauer, Realization of a sonic black hole analog in a bose-einstein condensate. Phys. Rev. Lett. 105(24) (2010)

    Google Scholar 

  19. U. Leonhardt, A laboratory analogue of the event horizon using slow light in an atomic medium. Nature 415(6870), 406–409 (2002)

    Article  ADS  Google Scholar 

  20. R. Schützhold, G. Plunien, G. Soff, Dielectric black hole analogs. Phys. Rev. Lett. 88, 061101 (2002)

    Article  ADS  Google Scholar 

  21. R. Schützhold, W.G. Unruh, Hawking radiation in an electromagnetic waveguide? Phys. Rev. Lett. 95, 031301 (2005)

    Article  ADS  Google Scholar 

  22. P.D. Nation, M.P. Blencowe, A.J. Rimberg, E. Buks, Analogue hawking radiation in a dc-squid array transmission line. Phys. Rev. Lett. 103, 087004 (2009)

    Article  ADS  Google Scholar 

  23. T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008)

    Article  ADS  Google Scholar 

  24. J. Steinhauer, Observation of quantum hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12(10), 959–965 (2016)

    Article  Google Scholar 

  25. L.-P. Euvé, F. Michel, R. Parentani, T.G. Philbin, G. Rousseaux, Observation of noise correlated by the hawking effect in a water tank. Phys. Rev. Lett. 117, 121301 (2016)

    Article  ADS  Google Scholar 

  26. W.G. Unruh, Experimental black hole evaporation. Phys. Today (2016)

    Google Scholar 

  27. E. Léo-Paul, G. Rousseaux, Génération non-linéaire d’harmoniques après une conversion linéaire en interaction houle-courant, in XIVèmes Journées Nationales Génie Côtier Génie Civil, ed. by D. Levacher, M. Sanchez et, V. Rey (Editions Paralia CFL, Nantes, 2016), pp. 181–190

    Google Scholar 

  28. F. Michel, J.-F. Coupechoux, R. Parentani, Phonon spectrum and correlations in a transonic flow of an atomic bose gas. Phys. Rev. D 94(8) (2016)

    Google Scholar 

  29. U. Leonhardt, Questioning the recent observation of quantum Hawking radiation (2016), arXiv:1609.03803

  30. A. Finke, P. Jain, S. Weinfurtner, On the observation of nonclassical excitations in bose einstein condensates. New J. Phys. 18(11), 113017 (2016)

    Article  ADS  Google Scholar 

  31. S. Finazzi, I. Carusotto, Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse. Phys. Rev. A 87(2) (2013)

    Google Scholar 

  32. M. Jacquet, F. König, Quantum vacuum emission from a refractive-index front. Phys. Rev. A 92(2) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime J. Jacquet .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacquet, M.J. (2018). Introduction. In: Negative Frequency at the Horizon. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-91071-0_1

Download citation

Publish with us

Policies and ethics