Negative Frequency at the Horizon pp 1-12 | Cite as
Introduction
Chapter
First Online:
- 268 Downloads
Abstract
Waves in media can be made to propagate on an effectively curved spacetime. Such analogue spacetimes are curved Lorentzian manifolds which enable the study of some features of gravity in the laboratory. In this introductory chapter, we present the fundamental arguments supporting the science of analogue gravity, whose necessity we motivate by the idea to observe and better understand the Hawking effect in such systems.
References
- 1.A. Einstein, Die feldgleichungen der gravitation, in Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1915), pp. 844–847Google Scholar
- 2.A. Einstein, Die grundlage der allgemeinen relativitatstheorie. Ann. der Phys. 354(7), 769–822 (1916)ADSCrossRefGoogle Scholar
- 3.J.C. Maxwell, On physical lines of force. Phil. Mag. 11, 11611–175; 281–291; 338–348 (1861)Google Scholar
- 4.J.C. Maxwell, On physical lines of force. Phil. Mag. 12(12–24), 85–95 (1862)Google Scholar
- 5.J.C. Maxwell, A Treatise on Electricity and Magnetism. (Clarendon press edition, 1873)Google Scholar
- 6.W.G. Unruh, Experimental black-hole evaporation? Phys. Rev. Lett. 46(21), 1351–1353 (1981)ADSCrossRefGoogle Scholar
- 7.S.W. Hawking, Black hole explosions? Nature 248(5443), 30–31 (1974)ADSCrossRefGoogle Scholar
- 8.C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation. (W.H. Freeman, San Francisco, 1973)Google Scholar
- 9.R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14(3), 57–59 (1965)ADSMathSciNetCrossRefGoogle Scholar
- 10.LIGO scientific collaboration and virgo collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)Google Scholar
- 11.J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)ADSMathSciNetCrossRefGoogle Scholar
- 12.J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7(8), 2333–2346 (1973)ADSMathSciNetCrossRefGoogle Scholar
- 13.S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)ADSMathSciNetCrossRefGoogle Scholar
- 14.E. Rubino, J. McLenaghan, S.C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C.E. Kuklewicz, U. Leonhardt, F. König, D. Faccio, Negative-frequency resonant radiation. Phys. Rev. Lett. 108(25) (2012)Google Scholar
- 15.G.E. Volovik. The Universe in a Helium Droplet. Number 117 in International series of monographs on physics (Oxford University Press, Oxford, 2009) OCLC: 636215451Google Scholar
- 16.G. Rousseaux, C. Mathis, P. Massa, T.G. Philbin, U. Leonhardt, Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect? New J. Phys. 10(5), 053015 (2008)ADSCrossRefGoogle Scholar
- 17.S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh, G.A. Lawrence, Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 106(2) (2011)Google Scholar
- 18.O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, J. Steinhauer, Realization of a sonic black hole analog in a bose-einstein condensate. Phys. Rev. Lett. 105(24) (2010)Google Scholar
- 19.U. Leonhardt, A laboratory analogue of the event horizon using slow light in an atomic medium. Nature 415(6870), 406–409 (2002)ADSCrossRefGoogle Scholar
- 20.R. Schützhold, G. Plunien, G. Soff, Dielectric black hole analogs. Phys. Rev. Lett. 88, 061101 (2002)ADSCrossRefGoogle Scholar
- 21.R. Schützhold, W.G. Unruh, Hawking radiation in an electromagnetic waveguide? Phys. Rev. Lett. 95, 031301 (2005)ADSCrossRefGoogle Scholar
- 22.P.D. Nation, M.P. Blencowe, A.J. Rimberg, E. Buks, Analogue hawking radiation in a dc-squid array transmission line. Phys. Rev. Lett. 103, 087004 (2009)ADSCrossRefGoogle Scholar
- 23.T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008)ADSCrossRefGoogle Scholar
- 24.J. Steinhauer, Observation of quantum hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12(10), 959–965 (2016)CrossRefGoogle Scholar
- 25.L.-P. Euvé, F. Michel, R. Parentani, T.G. Philbin, G. Rousseaux, Observation of noise correlated by the hawking effect in a water tank. Phys. Rev. Lett. 117, 121301 (2016)ADSCrossRefGoogle Scholar
- 26.W.G. Unruh, Experimental black hole evaporation. Phys. Today (2016)Google Scholar
- 27.E. Léo-Paul, G. Rousseaux, Génération non-linéaire d’harmoniques après une conversion linéaire en interaction houle-courant, in XIVèmes Journées Nationales Génie Côtier Génie Civil, ed. by D. Levacher, M. Sanchez et, V. Rey (Editions Paralia CFL, Nantes, 2016), pp. 181–190Google Scholar
- 28.F. Michel, J.-F. Coupechoux, R. Parentani, Phonon spectrum and correlations in a transonic flow of an atomic bose gas. Phys. Rev. D 94(8) (2016)Google Scholar
- 29.U. Leonhardt, Questioning the recent observation of quantum Hawking radiation (2016), arXiv:1609.03803
- 30.A. Finke, P. Jain, S. Weinfurtner, On the observation of nonclassical excitations in bose einstein condensates. New J. Phys. 18(11), 113017 (2016)ADSCrossRefGoogle Scholar
- 31.S. Finazzi, I. Carusotto, Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse. Phys. Rev. A 87(2) (2013)Google Scholar
- 32.M. Jacquet, F. König, Quantum vacuum emission from a refractive-index front. Phys. Rev. A 92(2) (2015)Google Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018