Skip to main content

Description of Osmotic Dehydration of Banana Slices Dipped in Solution of Water and Sucrose Followed by Complementary Drying Using Hot Air

  • Chapter
  • First Online:
Transport Phenomena in Multiphase Systems

Abstract

This chapter presents four mathematical approaches to describe processes of osmotic dehydration and complementary drying of agricultural products with cylindrical geometry. For this, four solutions for diffusion equation (in cylindrical coordinates) were proposed, two analytical solutions and two numerical solutions. All the formalism necessary to obtain these four solutions were presented. The most suitable models to describe the osmotic pretreatment and the complementary drying were determined using data of the osmotic dehydration of banana in solutions with 40 °Brix of sucrose and at temperature of 40 °C and data of the complementary drying at 40 °C. Programs developed in the FORTRAN language were used for optimization processes. Finally, the results obtained for the four models in the optimization processes were compared in order to obtain the best model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baini, R., Langrish, T.A.G.: Choosing an appropriate drying model for intermittent and continuous drying of bananas. J. Food Eng. 79(1), 330–343 (2007)

    Article  Google Scholar 

  2. Doymaz, İ.: Evaluation of mathematical models for prediction of thin-layer drying of banana slices. Int. J. Food Prop. 13(3), 486–497 (2010)

    Article  Google Scholar 

  3. Fernando, W.J.N., Low, H.C., Ahmad, A.L.: Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. J. Food Eng. 102(4), 310–316 (2011)

    Article  Google Scholar 

  4. Silva, W.P., Silva, C.M.D.P.S., SilvaJunior, A.F., Queiroz, A.J.M.: A numerical approach to determine some properties of cylindrical pieces of bananas during drying. Int. J. Food Eng. 11(3), 335–347 (2015)

    Google Scholar 

  5. Falcão Filho, R.S., Gusmão, R.P., Silva, W.P., Gomes, J.P., Carvalho Filho, E.V., El-Aouar, A.A.: Osmotic dehydration of pineapple stems in hypertonic sucrose solutions. Agric. Sci. 6(9), 916–924 (2015)

    Google Scholar 

  6. Panarese, V., Tylewicz, U., Santagapita, P., Rocculi, P., Rosa, M.D.: Isothermal and differential scanning calorimetries to evaluate structural and metabolic alterations of osmo-dehydrated kiwi fruit as a function of ripening stage. Innov. Food Sci. Emerg. Technol. 15, 66–71 (2012)

    Article  Google Scholar 

  7. Aires, J.E.F., Silva, W.P., Aires, K.L.C.A.F., Silva Júnior, A.F., Silva, C.M.D.P.S.: Description of osmotic dehydration of apple using two-dimensional diffusion models considering shrinkage and variations in process parameters. Drying Technology 35(7), 815–826 (2017)

    Article  Google Scholar 

  8. Germer, S.P.M., Morgano, M.A., da Silva, M.G., Silveira, N.F.A., Souza, E.C.G.: Effect of reconditioning and reuse of sucrose syrup in quality properties and retention of nutrients in osmotic dehydration of guava. Drying Technol. 34(8), 997–1008 (2016)

    Article  Google Scholar 

  9. Silva, W.P., Amaral, D.S., Duarte, M.E.M., Mata, M.E.R.M.C., Silva, C.M.D.P.S., Pinheiro, R.M.M., Pessoa, T.: Description of the osmotic dehydration and convective drying of coconut (Cocos nucifera L.) pieces: A three-dimensional approach. J. Food Eng. 115(1), 121–131 (2013)

    Article  Google Scholar 

  10. Yadav, A.K., Singh, S.V.: Osmotic dehydration of fruits and vegetables: a review. J. Food Sci. Technol. 51(9), 1654–1673 (2012)

    Article  Google Scholar 

  11. Silva, W.P., Silva, C.M.D.P.S., Lins, M.A.A., Gomes, J.P.: Osmotic dehydration of pineapple (Ananas comosus) pieces in cubical shape described by diffusion models. LWT—Food Sci. Technol. 55(1), 1–8 (2014)

    Article  Google Scholar 

  12. Silva, W.P., Aires, J.E.F., Castro, D.S., Silva, C.M.D.P.S., Gomes, J.P.: Numerical description of guava osmotic dehydration including shrinkage and variable effective mass diffusivity. LWT—Food Sci. Technol. 59(2), 859–866 (2014)

    Article  Google Scholar 

  13. Silva Júnior, A.F., Silva, W.P., Aires, J.E.F., Aires, K.L.C.A.F.: Numerical approach to describe complementary drying of banana slices osmotically dehydrated. Heat Mass Transf. (2017a). https://doi.org/10.1007/s00231-017-2120-6

  14. Silva Junior, A.F., Silva, W.P., Aires, J. E.F., Aires, K.L.C.A.F., Castro, D.S.: Osmotic dehydration kinetics of banana slices considering variable diffusivities and shrinkage. Int. J. Food Prop. 20(6), 1313–1325 (2017b)

    Google Scholar 

  15. Ruiz-López, I.I., Castillo-Zamudio, R.I., Salgado-Cervantes, M.A., Rodríguez-Jimenes, G.C., García-Alvarado, M.A.: Mass transfer modeling during osmotic dehydration of hexahedral pineapple slices in limited volume solutions. Food Bioprocess Technol. 3(3), 427–433 (2010)

    Article  Google Scholar 

  16. Amami, E., Fersi, A., Vorobiev, E., Kechaou, N.: Osmotic dehydration of carrot tissue enhanced by pulsed electric field, salt and centrifugal force. J. Food Eng. 83(4), 605–613 (2007)

    Article  Google Scholar 

  17. Singh, B., Panesar, P.S., Nanda, V.: Osmotic dehydration kinetics of carrot cubes in sodium chloride solution. Int. J. Food Sci. Technol. 43(8), 1361–1370 (2008)

    Article  Google Scholar 

  18. Conceição Silva, M.A.: Corrêa, J.L.G., Silva, Z.E.: Application of inverse methods in the osmotic dehydration of acerola. Int. J. Food Sci. Technol. 45(12), 2477–2484 (2010)

    Article  Google Scholar 

  19. Garcia, C.C., Mauro, M.A., Kimura, M.: Kinetics of osmotic dehydration and air drying of pumpkins (Cucurbita moschata). J. Food Eng. 82(3), 284–291 (2007)

    Article  Google Scholar 

  20. Souza Silva, K., Caetano, L.C., Garcia, C.C., Romero, J.T., Santos, A.B., Mauro, M.A.: Osmotic dehydration process for low temperature blanched pumpkin. J. Food Eng. 105(1), 56–64 (2011)

    Article  Google Scholar 

  21. Arballo, J.R., Bambicha, R.R., Campanone, L.A., Agnelli, M.E., Mascheroni, R.H.: Mass transfer kinetics and regressional-desirability optimisation during osmotic dehydration of pumpkin, kiwi and pear. Int. J. Food Sci. Technol. 47(2), 306–314 (2012)

    Article  Google Scholar 

  22. Ferrari, C.C., Arballo, J.R., Mascheroni, R.H., Hubinger, M.D.: Modelling of mass transfer and texture evaluation during osmotic dehydration of melon under vacuum. Int. J. Food Sci. Technol. 46(2), 436–443 (2011)

    Article  Google Scholar 

  23. Derossi, A., De Pilli, T., Severini, C., McCarthy, M.J.: Mass transfer during osmotic dehydration of apples. J. Food Eng. 86(4), 519–528 (2008)

    Article  Google Scholar 

  24. Zúñiga, R.N., Pedreschi, F.: Study of the pseudo-equilibrium during osmotic dehydration of apples and its effect on the estimation of water and sucrose effective diffusivity coefficients. Food Bioprocess Technol. 5(7), 2717–2727 (2011)

    Article  Google Scholar 

  25. Mercali, G.D., Tessaro, I.C., Norena, C.P.Z., Marczak, L.D.F.: Mass transfer kinetics during osmotic dehydration of bananas (Musa sapientum, shum.). Int. J. Food Sci. Technol. 45(11), 2281–2289 (2010)

    Article  Google Scholar 

  26. Mercali, G.D., Marczak, L.D.F., Tessaro, I.C., Noreña, C.P.Z.: Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT—Food Sci. Technol. 44(1), 82–91 (2011)

    Article  Google Scholar 

  27. Luikov, A.V.: Analytical Heat Diffusion Theory, p. 685. Academic Press, Inc. Ltd., London (1968)

    Google Scholar 

  28. Crank, J.: The Mathematics of Diffusion, p. 414. Clarendon Press, Oxford, UK (1975)

    Google Scholar 

  29. Da Silva, W.P., Precker, J.W., Silva, C.M.D.P.S., Gomes, J.P.: Determination of effective diffusivity and convective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: application to the drying of rough rice. J. Food Eng. 98(3), 302–308 (2010)

    Article  Google Scholar 

  30. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York, USA (1980)

    MATH  Google Scholar 

  31. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, p. 781. Taylor & Francis, USA (1997)

    MATH  Google Scholar 

  32. Schäfer, M.: Computational Engeineering-Introduction to Numerical Methods. Springer: Germany, 321P. (2006)

    Google Scholar 

  33. Maliska, C. R.: Transferência de Calor e Mecânica dos Fluidos Computacional. LTC: Rio de Janeiro, 453 p. (2013)

    Google Scholar 

  34. Da Silva, W.P., Precker, J.W.: Silva, C.M.D.P.S., Silva, D.D.P.S.: Determination of the application to drying of cowpea. J. Food Eng. 95(2), 298–304 (2009)

    Article  Google Scholar 

  35. Silva, W.P.; Silva, C.M.D.P.S.: “Convective” software, online, available at http://zeus.df.ufcg.edu.br/labfit/Convective.htm (2009a). Accessed 15 January 2018

  36. Silva, W.P.; Silva, C.M.D.P.S.: “Prescribed” software, online, available at http://zeus.df.ufcg.edu.br/labfit/Prescribed.htm (2009b). Accessed 15 January 2018

  37. Silva W. P., Silva C.M.D.P.S.: LS optimizer, version 5.1, online, available from world wide web: http://zeus.df.ufcg.edu.br/labfit/LS.htm (2017). Accessed 21 June 2017

  38. Silva, W.P.; Silva, C.M.D.P.S.: LAB fit curve fitting software, V.7.2.46, online, available at: www.labfit.net (2009c). Accessed 15 January 2018

  39. Amami, E., Fersi, A., Vorobiev, E., Kechaou, N.: Modelling of mass transfer during osmotic dehydration of apple tissue pre-treated by pulsed electric field. LWT 39, 1014–1021 (2006)

    Article  Google Scholar 

  40. Falade, K.O., Igbeka, J.C.: Ayanwuyi; F. A.: Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. J. Food Eng. 80, 979–985 (2007)

    Article  Google Scholar 

  41. Khoyi, M.R.: Hesari, J: Osmotic dehydration kinetics of apricot using sucrose solution. J. Food Eng. 78, 1355–1360 (2007)

    Article  Google Scholar 

  42. Abraão, A.S., Lemos, A.M., Vilela, A., Sousa, J.M., Nunes, F.M.: Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food Bioprod. Process. 91, 481–494 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) for the support given to this research and for his research grant (Processes Number 302480/2015-3 and 444053/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Pereira da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Silva Júnior, A.F., Pereira da Silva, W., de Oliveira Farias, V.S., da Silva e Silva, C.M.D.P., Barbosa de Lima, A.G. (2018). Description of Osmotic Dehydration of Banana Slices Dipped in Solution of Water and Sucrose Followed by Complementary Drying Using Hot Air. In: Delgado, J., Barbosa de Lima, A. (eds) Transport Phenomena in Multiphase Systems. Advanced Structured Materials, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-319-91062-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91062-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91061-1

  • Online ISBN: 978-3-319-91062-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics