Description of Osmotic Dehydration of Banana Slices Dipped in Solution of Water and Sucrose Followed by Complementary Drying Using Hot Air

  • A. F. da Silva Júnior
  • W. Pereira da Silva
  • V. S. de Oliveira Farias
  • C. M. D. P. da Silva e Silva
  • Antonio Gilson Barbosa de Lima
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 93)


This chapter presents four mathematical approaches to describe processes of osmotic dehydration and complementary drying of agricultural products with cylindrical geometry. For this, four solutions for diffusion equation (in cylindrical coordinates) were proposed, two analytical solutions and two numerical solutions. All the formalism necessary to obtain these four solutions were presented. The most suitable models to describe the osmotic pretreatment and the complementary drying were determined using data of the osmotic dehydration of banana in solutions with 40 °Brix of sucrose and at temperature of 40 °C and data of the complementary drying at 40 °C. Programs developed in the FORTRAN language were used for optimization processes. Finally, the results obtained for the four models in the optimization processes were compared in order to obtain the best model.


Diffusion equation Numerical solution Analytical solution Mass transfer Finite-volume 



The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) for the support given to this research and for his research grant (Processes Number 302480/2015-3 and 444053/2014-0).


  1. 1.
    Baini, R., Langrish, T.A.G.: Choosing an appropriate drying model for intermittent and continuous drying of bananas. J. Food Eng. 79(1), 330–343 (2007)CrossRefGoogle Scholar
  2. 2.
    Doymaz, İ.: Evaluation of mathematical models for prediction of thin-layer drying of banana slices. Int. J. Food Prop. 13(3), 486–497 (2010)CrossRefGoogle Scholar
  3. 3.
    Fernando, W.J.N., Low, H.C., Ahmad, A.L.: Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. J. Food Eng. 102(4), 310–316 (2011)CrossRefGoogle Scholar
  4. 4.
    Silva, W.P., Silva, C.M.D.P.S., SilvaJunior, A.F., Queiroz, A.J.M.: A numerical approach to determine some properties of cylindrical pieces of bananas during drying. Int. J. Food Eng. 11(3), 335–347 (2015)Google Scholar
  5. 5.
    Falcão Filho, R.S., Gusmão, R.P., Silva, W.P., Gomes, J.P., Carvalho Filho, E.V., El-Aouar, A.A.: Osmotic dehydration of pineapple stems in hypertonic sucrose solutions. Agric. Sci. 6(9), 916–924 (2015)Google Scholar
  6. 6.
    Panarese, V., Tylewicz, U., Santagapita, P., Rocculi, P., Rosa, M.D.: Isothermal and differential scanning calorimetries to evaluate structural and metabolic alterations of osmo-dehydrated kiwi fruit as a function of ripening stage. Innov. Food Sci. Emerg. Technol. 15, 66–71 (2012)CrossRefGoogle Scholar
  7. 7.
    Aires, J.E.F., Silva, W.P., Aires, K.L.C.A.F., Silva Júnior, A.F., Silva, C.M.D.P.S.: Description of osmotic dehydration of apple using two-dimensional diffusion models considering shrinkage and variations in process parameters. Drying Technology 35(7), 815–826 (2017)CrossRefGoogle Scholar
  8. 8.
    Germer, S.P.M., Morgano, M.A., da Silva, M.G., Silveira, N.F.A., Souza, E.C.G.: Effect of reconditioning and reuse of sucrose syrup in quality properties and retention of nutrients in osmotic dehydration of guava. Drying Technol. 34(8), 997–1008 (2016)CrossRefGoogle Scholar
  9. 9.
    Silva, W.P., Amaral, D.S., Duarte, M.E.M., Mata, M.E.R.M.C., Silva, C.M.D.P.S., Pinheiro, R.M.M., Pessoa, T.: Description of the osmotic dehydration and convective drying of coconut (Cocos nucifera L.) pieces: A three-dimensional approach. J. Food Eng. 115(1), 121–131 (2013)CrossRefGoogle Scholar
  10. 10.
    Yadav, A.K., Singh, S.V.: Osmotic dehydration of fruits and vegetables: a review. J. Food Sci. Technol. 51(9), 1654–1673 (2012)CrossRefGoogle Scholar
  11. 11.
    Silva, W.P., Silva, C.M.D.P.S., Lins, M.A.A., Gomes, J.P.: Osmotic dehydration of pineapple (Ananas comosus) pieces in cubical shape described by diffusion models. LWT—Food Sci. Technol. 55(1), 1–8 (2014)CrossRefGoogle Scholar
  12. 12.
    Silva, W.P., Aires, J.E.F., Castro, D.S., Silva, C.M.D.P.S., Gomes, J.P.: Numerical description of guava osmotic dehydration including shrinkage and variable effective mass diffusivity. LWT—Food Sci. Technol. 59(2), 859–866 (2014)CrossRefGoogle Scholar
  13. 13.
    Silva Júnior, A.F., Silva, W.P., Aires, J.E.F., Aires, K.L.C.A.F.: Numerical approach to describe complementary drying of banana slices osmotically dehydrated. Heat Mass Transf. (2017a).
  14. 14.
    Silva Junior, A.F., Silva, W.P., Aires, J. E.F., Aires, K.L.C.A.F., Castro, D.S.: Osmotic dehydration kinetics of banana slices considering variable diffusivities and shrinkage. Int. J. Food Prop. 20(6), 1313–1325 (2017b)Google Scholar
  15. 15.
    Ruiz-López, I.I., Castillo-Zamudio, R.I., Salgado-Cervantes, M.A., Rodríguez-Jimenes, G.C., García-Alvarado, M.A.: Mass transfer modeling during osmotic dehydration of hexahedral pineapple slices in limited volume solutions. Food Bioprocess Technol. 3(3), 427–433 (2010)CrossRefGoogle Scholar
  16. 16.
    Amami, E., Fersi, A., Vorobiev, E., Kechaou, N.: Osmotic dehydration of carrot tissue enhanced by pulsed electric field, salt and centrifugal force. J. Food Eng. 83(4), 605–613 (2007)CrossRefGoogle Scholar
  17. 17.
    Singh, B., Panesar, P.S., Nanda, V.: Osmotic dehydration kinetics of carrot cubes in sodium chloride solution. Int. J. Food Sci. Technol. 43(8), 1361–1370 (2008)CrossRefGoogle Scholar
  18. 18.
    Conceição Silva, M.A.: Corrêa, J.L.G., Silva, Z.E.: Application of inverse methods in the osmotic dehydration of acerola. Int. J. Food Sci. Technol. 45(12), 2477–2484 (2010)CrossRefGoogle Scholar
  19. 19.
    Garcia, C.C., Mauro, M.A., Kimura, M.: Kinetics of osmotic dehydration and air drying of pumpkins (Cucurbita moschata). J. Food Eng. 82(3), 284–291 (2007)CrossRefGoogle Scholar
  20. 20.
    Souza Silva, K., Caetano, L.C., Garcia, C.C., Romero, J.T., Santos, A.B., Mauro, M.A.: Osmotic dehydration process for low temperature blanched pumpkin. J. Food Eng. 105(1), 56–64 (2011)CrossRefGoogle Scholar
  21. 21.
    Arballo, J.R., Bambicha, R.R., Campanone, L.A., Agnelli, M.E., Mascheroni, R.H.: Mass transfer kinetics and regressional-desirability optimisation during osmotic dehydration of pumpkin, kiwi and pear. Int. J. Food Sci. Technol. 47(2), 306–314 (2012)CrossRefGoogle Scholar
  22. 22.
    Ferrari, C.C., Arballo, J.R., Mascheroni, R.H., Hubinger, M.D.: Modelling of mass transfer and texture evaluation during osmotic dehydration of melon under vacuum. Int. J. Food Sci. Technol. 46(2), 436–443 (2011)CrossRefGoogle Scholar
  23. 23.
    Derossi, A., De Pilli, T., Severini, C., McCarthy, M.J.: Mass transfer during osmotic dehydration of apples. J. Food Eng. 86(4), 519–528 (2008)CrossRefGoogle Scholar
  24. 24.
    Zúñiga, R.N., Pedreschi, F.: Study of the pseudo-equilibrium during osmotic dehydration of apples and its effect on the estimation of water and sucrose effective diffusivity coefficients. Food Bioprocess Technol. 5(7), 2717–2727 (2011)CrossRefGoogle Scholar
  25. 25.
    Mercali, G.D., Tessaro, I.C., Norena, C.P.Z., Marczak, L.D.F.: Mass transfer kinetics during osmotic dehydration of bananas (Musa sapientum, shum.). Int. J. Food Sci. Technol. 45(11), 2281–2289 (2010)CrossRefGoogle Scholar
  26. 26.
    Mercali, G.D., Marczak, L.D.F., Tessaro, I.C., Noreña, C.P.Z.: Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT—Food Sci. Technol. 44(1), 82–91 (2011)CrossRefGoogle Scholar
  27. 27.
    Luikov, A.V.: Analytical Heat Diffusion Theory, p. 685. Academic Press, Inc. Ltd., London (1968)Google Scholar
  28. 28.
    Crank, J.: The Mathematics of Diffusion, p. 414. Clarendon Press, Oxford, UK (1975)Google Scholar
  29. 29.
    Da Silva, W.P., Precker, J.W., Silva, C.M.D.P.S., Gomes, J.P.: Determination of effective diffusivity and convective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: application to the drying of rough rice. J. Food Eng. 98(3), 302–308 (2010)CrossRefGoogle Scholar
  30. 30.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York, USA (1980)zbMATHGoogle Scholar
  31. 31.
    Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, p. 781. Taylor & Francis, USA (1997)zbMATHGoogle Scholar
  32. 32.
    Schäfer, M.: Computational Engeineering-Introduction to Numerical Methods. Springer: Germany, 321P. (2006)Google Scholar
  33. 33.
    Maliska, C. R.: Transferência de Calor e Mecânica dos Fluidos Computacional. LTC: Rio de Janeiro, 453 p. (2013)Google Scholar
  34. 34.
    Da Silva, W.P., Precker, J.W.: Silva, C.M.D.P.S., Silva, D.D.P.S.: Determination of the application to drying of cowpea. J. Food Eng. 95(2), 298–304 (2009)CrossRefGoogle Scholar
  35. 35.
    Silva, W.P.; Silva, C.M.D.P.S.: “Convective” software, online, available at (2009a). Accessed 15 January 2018
  36. 36.
    Silva, W.P.; Silva, C.M.D.P.S.: “Prescribed” software, online, available at (2009b). Accessed 15 January 2018
  37. 37.
    Silva W. P., Silva C.M.D.P.S.: LS optimizer, version 5.1, online, available from world wide web: (2017). Accessed 21 June 2017
  38. 38.
    Silva, W.P.; Silva, C.M.D.P.S.: LAB fit curve fitting software, V.7.2.46, online, available at: (2009c). Accessed 15 January 2018
  39. 39.
    Amami, E., Fersi, A., Vorobiev, E., Kechaou, N.: Modelling of mass transfer during osmotic dehydration of apple tissue pre-treated by pulsed electric field. LWT 39, 1014–1021 (2006)CrossRefGoogle Scholar
  40. 40.
    Falade, K.O., Igbeka, J.C.: Ayanwuyi; F. A.: Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. J. Food Eng. 80, 979–985 (2007)CrossRefGoogle Scholar
  41. 41.
    Khoyi, M.R.: Hesari, J: Osmotic dehydration kinetics of apricot using sucrose solution. J. Food Eng. 78, 1355–1360 (2007)CrossRefGoogle Scholar
  42. 42.
    Abraão, A.S., Lemos, A.M., Vilela, A., Sousa, J.M., Nunes, F.M.: Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food Bioprod. Process. 91, 481–494 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. F. da Silva Júnior
    • 1
  • W. Pereira da Silva
    • 2
  • V. S. de Oliveira Farias
    • 1
  • C. M. D. P. da Silva e Silva
    • 2
  • Antonio Gilson Barbosa de Lima
    • 3
  1. 1.Physics and Mathematics DepartmentFederal University of Campina GrandeCuitéBrazil
  2. 2.Physics DepartmentFederal University of Campina GrandeCampina GrandeBrazil
  3. 3.Department of Mechanical EngineeringFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations