Water Absorption Process in Polymer Composites: Theory Analysis and Applications

  • R. Q. C. Melo
  • W. R. G. Santos
  • Antonio Gilson Barbosa de Lima
  • W. M. P. B. Lima
  • J. V. Silva
  • R. P. Farias
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 93)

Abstract

Transport phenomena in porous media represent an important research area related to heat and mass transfer, and fluid flow fields. This chapter presents information about anomalous behaviour of moisture transient diffusion in vegetable fiber-reinforced composites materials. Composites reinforced with natural fibers are sensitive to influences from environmental agents such as moisture and temperature. Herein, topics related to theory, experiments, mathematical modeling and solution procedures, and technological applications are presented and discussed in detail. An advanced model that (Langmuir-type model) to describe water absorption in polymer composites and the analytical (Laplace transform technique) and numerical (finite-volume method) solutions of the governing equation has been obtained, considering constant thermo-physical properties. In the Langmuir model, moisture sorption can be explained by assuming that water exists in the free and bound phases inside the material. Application has been done to water uptake in Caroá fiber-reinforced polymer composites. Results of the absorption kinetics and concentration distribution of water (free and trapped water molecules) within the material along the process are presented and analyzed. Predicted results compared to experimental data of average moisture content have shown that the model was effective for description of the phenomenon, allowing a better understanding about the effects of moisture migration mechanisms.

Keywords

Composites Vegetable fiber Langmuir model Analytical Numerical 

Notes

Acknowledgements

The authors thanks to CNPq, CAPES and FINEP (Brazilian Research Agencies) for financial support and the authors of the references cited in text which helps in the improvement.

References

  1. 1.
    Peters, S.T.: Handbook of Composites. Chapman & Hall, Cambridge University Press, Cambridge, England (1999)Google Scholar
  2. 2.
    Shackelford, J.F.: Materials Science for Engineers, 6th edn. Pearson Prentice Hall, New Jersey, USA (2005)Google Scholar
  3. 3.
    Soutis, C.: Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 41(2), 143–151 (2005)CrossRefGoogle Scholar
  4. 4.
    Cavalcanti, W. S.: Composites polyester/woven plant-glass: mechanical characterization and simulation of water sorption, Doctorate Thesis in Process Engineering, University Federal of Campina Grande—UFCG, Campina Grande, PB, Brazil (2006) (in portuguese)Google Scholar
  5. 5.
    Mouzakis, D.E., Zoga, H., Galiotis, C.: Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs). Compos. B Eng. 39(3), 467–475 (2008)CrossRefGoogle Scholar
  6. 6.
    Ratna, D.: Handbook of Thermoset Resins, pp. 19–21. Smithers Publishers, Shawbury, United Kingdom (2009)Google Scholar
  7. 7.
    Callister Jr., W.D.: Materials Science and Engineering an Introduction, 8th edn. Wiley, New York, USA (2012)Google Scholar
  8. 8.
    Mallick, P.K.: Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd edn. CRC Press, Taylor and Francis Group, New York (2007)CrossRefGoogle Scholar
  9. 9.
    Nóbrega, M.M.S.: Composites of polyester matrix with caroá fiber Neoglaziovia Variegata: mechanical characterization and sorption of water. Doctorate Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil (2007) (in Portuguese)Google Scholar
  10. 10.
    Jayamol, G., Bhagawan, S.S., Thomas, S.: Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre. Compos. Sci. Technol. 58(9), 1471–1485 (1998)CrossRefGoogle Scholar
  11. 11.
    Bledzki, A.K., Gassan, J.: Composite reinforced with cellulose based fiber. Prog. Polym. Sci. 24(2), 221–274 (1999)CrossRefGoogle Scholar
  12. 12.
    Joseph, K., Medeiros, E.S., Carvalho, L.H.: Composites of polyester matrix reinforced by short fibers of sisal. Polímeros 9(4), 136–141, São Carlos (1999) (in Portuguese)CrossRefGoogle Scholar
  13. 13.
    Joseph, S., Sreekala, M.S., Oommen, Z., Thomas, S.: A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibers and glass fibers. Compos. Sci. Technol. 62(14), 1857–1868 (2002)CrossRefGoogle Scholar
  14. 14.
    Medeiros, E.S., Agnelli, J.A.M., Joseph, K., Carvalho, L.H., Mattoso, L.H.C.: Curing behavior of a novolac-type phenolic resinanalyzed by differential scanning calorimetry. J. Appl. Polym. Sci. 90(6), 1678–1682 (2003)CrossRefGoogle Scholar
  15. 15.
    Nóbrega, M.M.S., Fonseca, V.M.; Carvalho, L.H.: Use of Caroá and macambira fibers in polyester matrix composites. In: 8th Brazilian Polymer Congress, Proceedings, pp. 1231–1232. Águas de Lindóia, Brazil (2005) (in Portuguese)Google Scholar
  16. 16.
    Agarwal, R., Saxena, N.S., Sharma, K.B., Thomas, S., Pothan, L.A.: Thermal conduction and diffusion through polyester composities. Indian J. Pure Appl. Phys. 44(10), 746–750 (2006)Google Scholar
  17. 17.
    Carvalho, L.H., Cavalcanti, W.S.: Mechanical properties of composite polyester/hybrid sisal/glass. Polymers 16(1), 33–37 (2006) (in Portuguese)Google Scholar
  18. 18.
    Carvalho, L.H., Canedo, E.L., Neto, S.F., Lima, A.G.B.: Moisture transport process in vegetable fiber composites: theory and analysis for technological applications. In: Delgado, J.M.P.Q. (ed.) Industrial and technological applications of transport in porous materials, pp. 37–62. Berlin, Heidelberg, Springer (2013)CrossRefGoogle Scholar
  19. 19.
    Uday Kiran, C., Ramachandra Reddy, G., Dabade, B.M., Rajesham, S.: Tensile properties of sun hemp, banana and sisal fiber reinforced with polyester composites. J. Reinf. Plast. Compos. 26(10), 1043–1050 (2007)CrossRefGoogle Scholar
  20. 20.
    Haneefa, A., Bindu, P., Arvind, I., Thomas, S.: Studies on tensile and flexural properties of short banana/glass hybrid fiber reinforced polystyrene composites. J. Compos. Mater. 42(15), 1471–1489 (2008)CrossRefGoogle Scholar
  21. 21.
    Costa, D.S., Peres, M.N.P.B., Barreira, R.M., Silva, R.L.B.,Silva, V.L.D., Sá, F.A., Souza, J.A.S.: Composites reinforced with sisal and mauve fibers: analysis of the tensionxlength fiber. In: 20th Brazilian Congress of Engineering and Science Materials, Joinville, Brazil (2012) (in Portuguese)Google Scholar
  22. 22.
    Venkateshwaran, N., Elayaperumal, A., Sathiya, G.K.: Prediction of tensile properties of hybrid-natural fiber composites. Compos. B Eng. 43(2), 793–796 (2012)CrossRefGoogle Scholar
  23. 23.
    Santos, A.C.L., Miranda, C.S., Carvalho, G.G.P., Carvalho, R.F., Fiuza, R.P., Jose, N.M.: Effect of surface treatments on banana fiber from the state of Bahia. In: 20th Brazilian Congress of Engineering and Science Materials, Joinville, Brasil (2002) (in Portuguese)Google Scholar
  24. 24.
    Smith, F.C., Moloney, L.D., Matthews, F.L.: Fabrications of woven fibre/polycarbonate repair patches. Compos. A Appl. Sci. Manuf. 27A(11), 1089–1095 (1996)CrossRefGoogle Scholar
  25. 25.
    Idicula, M., Boudenne, A., Umadevi, L., Ibos, L., Candau, Y., Thomas, S.: Thermophysical properties of natural fibre reinforced polyester composites. Compos. Sci. Technol. 66(15), 2719–2725 (2006)CrossRefGoogle Scholar
  26. 26.
    Cavalcanti, W.S.: Mechanical properties of polyester/jute composites: effects of surface treatments, thermal aging and water absorption. Master Dissertation in Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil (2000) (in Portuguese)Google Scholar
  27. 27.
    Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M.: Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37(11), 1552–1596 (2012)CrossRefGoogle Scholar
  28. 28.
    Ishizaki, M.H., Visconte, L.L.Y., Furtado, C.R.G., Leite, M.C.A.M., Leblanc, J.L.: Mechanical and morphological characterization of polypropylene and green coconut fiber composites: Influence of fiber content and mixing conditions. Polímeros 16(3), 182–186 (2006) (in Portuguese)Google Scholar
  29. 29.
    D’almeida, A.L.F.S.; Carvalho, L.H.; D’almeida, J.R.M.: Characterization of caroá (Neoglaziovia variegata) fibers. In: World Polymer Congress and 41° International Symposium on Macromolecules. Procedings. Rio de Janeiro, Brazil (2006)Google Scholar
  30. 30.
    Kalia, S., Kaith, B.S., Kaur, I.: Cellulose fibers: bio- and nano-polymer composites green chemistry and technology. Springer-Verlag, Berlin, Germany (2011)CrossRefGoogle Scholar
  31. 31.
    Silva, H.S.P.: Development of polymeric composites with curauá fibers and hybrids with glass fibers. Master Dissertation in Materials, Metalutgy and Mining Engineering. Federal University of Rio Grande do Sul, Porto Alegre, Brazil (2010) (in Portuguese)Google Scholar
  32. 32.
    Trindade, W.G., Hoareau, W., Megiatto, J.D., Razera, I.A.T., Castellan, A., Frollini, E.: Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Biomacromol 6(5), 2485–2496 (2005)CrossRefGoogle Scholar
  33. 33.
    Levy Neto, F., Pardini, L.C.: Structural composites: science and technology. Ed. Edgar Blucher, São Paulo, Brazil (2006) (in Portuguese)Google Scholar
  34. 34.
    Silva, R.V.: Polyurethane resin composite derived from castor oil and vegetable fibers. Doctorate Thesis in Science and Materials Engineering. University of São Paulo, São Carlos, SP, Brazil (2003) (in Portuguese)Google Scholar
  35. 35.
    Paul, S.A., Boudenne, A., Ibos, L., Candau, Y.: Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos. A Appl. Sci. Manuf. 39(9), 1582–1588 (2008)CrossRefGoogle Scholar
  36. 36.
    Joseph, P.V., Rabello, M.S., Mattoso, L.H., Joseph, K., Thomas, S.: Environmental effects on the degradation behavior of sisal fiber reinforced polypropylene composites. Compos. Sci. Technol. 62(10–11), 1357–1372 (2002)CrossRefGoogle Scholar
  37. 37.
    Dhakal, H.N., Zhang, Z.Y., Richardson, M.O.W.: Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 67(7–8), 1674–1683 (2007)CrossRefGoogle Scholar
  38. 38.
    Sreekala, M.S., Kumaran, M.G., Thomas, S.S.: Water sorption in oil palm fiber reinforced phenol formaldehyde conposites. Compos. A 33, 763–777 (2002)CrossRefGoogle Scholar
  39. 39.
    Chen, H., Miao, M., Ding, X.: Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos. A Appl. Sci. Manuf. 40(12), 2013–2019 (2009)CrossRefGoogle Scholar
  40. 40.
    Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W.: A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 47, 424–442 (2013)CrossRefGoogle Scholar
  41. 41.
    Li, Y., Mai, Y.W., Ye, L.: Sisal fibre and its composites: a review of recent developments. Compos. Sci. Technol. 60(11), 2037–2055 (2000)CrossRefGoogle Scholar
  42. 42.
    Wambua, P., Ivens, J., Verpoest, I.: Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63(9), 1259–1264 (2003)CrossRefGoogle Scholar
  43. 43.
    Aziz, S.H., Ansell, M.P., Clarke, S.J., Panteny, S.R.: Modified polyester resins for natural fibre composites. Compos. Sci. Technol. 65(3–4), 525–535 (2005)CrossRefGoogle Scholar
  44. 44.
    Hodzic, A., Shanks, R.: Natural fibre composites—materials, processes and properties. Ed. Woodhead Publishing Limited, Philadelphia, USA (2014)Google Scholar
  45. 45.
    Espert, A., Vilaplana, F., Karlsson, S.: Comparison of water absorption in natural cellulosic fiber from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. A Appl. Sci. Manuf. 35(11), 1267–1276 (2004)CrossRefGoogle Scholar
  46. 46.
    Pothan, L., Thomas, S.: Effect of hybridization and chemical modification on the water-absorption behaviour of banana fiber-reinforced polyester composites. J. Appl. Polym. Sci. 91(6), 3856–3865 (2004)CrossRefGoogle Scholar
  47. 47.
    Lin, Q., Zhou, X., Dai, G.: Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour-filled polypropylene composites. J. Appl. Polym. Sci. 85(14), 2824–2832 (2002)CrossRefGoogle Scholar
  48. 48.
    Comyn, J.: Polymer permeability, p. 383. Elsevier, London, England (1985)Google Scholar
  49. 49.
    Bismarck, A., Askargorta, I.A., Springer, J., Lampke, T., Wielage, B., Stamboulis, A.: Surface characterization of flax, hemp and cellulose fibres; surface properties and the water uptake behaviour. Polym. Compos. 23(5), 872–894 (2002) CrossRefGoogle Scholar
  50. 50.
    Nair, M.K.C., Thomas, S.: Effect of ageing on the mechanical properties of short sisal fibre reinforced polystyrene composites. J. Thermoplast. Compos. Mater. 16(3), 249–271 (2003)CrossRefGoogle Scholar
  51. 51.
    Santos, D.G., Lima, A.G.B., Pinto, M.V.S.: Mechanical characterization and water sorption in polyester matrix composites reinforced with sisal fiber: An experimental investigation. Deff. Diff. Forum 369, 131–134 (2016)Google Scholar
  52. 52.
    Chow, C.P.L., Xing, X.S., Li, R.K.Y.: Moisture absorption studies of sisal fibre reinforced polypropylene composites. Compos. Sci. Technol. 67(2), 306–313 (2007)CrossRefGoogle Scholar
  53. 53.
    Osman, E., Vakhguelt, E., Sbarski, I., Mutasher, S.: Water absorption behavior and its effect on the mechanical properties of kenaf natural fiber unsaturated polyester composites. In: 18th International Conference on Composite Materials, Edinburgh, Scotland (2009)Google Scholar
  54. 54.
    Cavalcanti, W.S., Carvalho, L.H., Lima, A.G.B.: Sorption of water in polyester-unsaturated composites reinforced with jute and jute-glass fabric: modeling and simulation and experimentation. Polymers, 20(1), 78–83 (2010) (in Portuguese)Google Scholar
  55. 55.
    Nóbrega, M.M.S., Cavalcanti, W.S., Carvalho, L.H., Lima, A.G.B.: Water absorption in unsaturated polyester composites reinforced with caroá fiber fabrics: modeling and simulation. Materialwiss. Werkstofftech. 41(5), 300–305 (2010)CrossRefGoogle Scholar
  56. 56.
    Badia, J.D., Kittikorn, T., Strömberg, E., Santonja-Blasco, L., Martínez-Felipe, A., Ribes-Greus, A., Ek, M., Karlsson, S.: Water absorption and hydrothermal performance of PHBV/sisal biocomposites. Polym. Degrad. Stab. 108, 166–174 (2014)CrossRefGoogle Scholar
  57. 57.
    Melo, J. B. C. A.: Water absorption in fiber reinforced polymer composites of pineapple leaf: modeling and simulation. Doctorate Thesis in Process Engineering. Federal University of Campina Grande, Campina Grande, Brazil (2014) (in Portuguese)Google Scholar
  58. 58.
    Huner, U.: Effect of water absorption on the mechanical properties of flax fiber reinforced epoxy composites. Adv. Sci. Technol. 9(26), 1–6 (2015)Google Scholar
  59. 59.
    Fonseca, A.A.P., Arellano, M., Rodrigue, D., Nunez, R.G., Ortiz, J.R.R.: Effect of coupling agent content and water absorption on the mechanical properties of coir-agave fibers reinforced polyethylene hybrid composites. Polym. Compos. 37(10), 3015–3024 (2016)CrossRefGoogle Scholar
  60. 60.
    Fuentes, C.A., Ting, K.W., Dupont-Gillain, C., Steensma, M., Talma, A.G., Zuijderduin, R., Van Vuure, A.W.: Effect of humidity during manufacturing on the interfacial strength of non-pre-dried flax fibre/unsaturated polyester composites. Compos. A Appl. Sci. Manuf. 84, 209–215 (2016)CrossRefGoogle Scholar
  61. 61.
    Bezerra, A.F.C., Cavalcanti, W.S., Lima, A.G.B., Souza, M.J.: Unsaturated polyester composite/caroá Fiber (Neoglaziovia Variegata): Water sorption and mechanical properties. In: 3nd Brazilian Conference on Composite Materials—BCCM-3, Gramado, Brazil (2016)Google Scholar
  62. 62.
    Liu, W., Qiu, R., Li, K.: Effects of fiber extraction, morphology, and surface modification on the mechanical properties and water absorption of bamboo fibers-unsaturated polyester composites. Polym. Compos. 37(5), 1612–1619 (2016)CrossRefGoogle Scholar
  63. 63.
    Glaskova, T.I., Guedes, R.M., Morais, J.J., Aniskevich, A.N.: A comparative analysis of moisture transport models as applied to an epoxy binder. Mech. Compos. Mater. 43(4), 377–388 (2007)CrossRefGoogle Scholar
  64. 64.
    Choi, H.S., Ahn, K.J., Nam, J.D., Chun, H.J.: Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments. Compos. A Appl. Sci. Manuf. 32(5), 709–720 (2001)CrossRefGoogle Scholar
  65. 65.
    Srihari, S., Revathi, A., Rao, R.M.V.G.K.: Hygrothermal effects on RT-cured glass-epoxi composites in immersion environments. Part A: Moisture absorption characteristics. J. Reinf. Plast. Compos. 21(11), 983–991 (2002)CrossRefGoogle Scholar
  66. 66.
    Yao, J., Ziegmann, G.: Water absorption behavior and its influence on properties of GRP pipe. J. Compos. Mater. 41(8), 993–1008 (2007)CrossRefGoogle Scholar
  67. 67.
    Najafi, S.K., Kiaefar, A., Hamidina, E., Tajvidi, M.: Water absorption behavior of composites from sawdust and recycled plastics. J. Reinf. Plast. Compos. 26(3), 341–348 (2007)CrossRefGoogle Scholar
  68. 68.
    Czél, G., Czigány, T.: A study of water absorption and mechanical properties of glass fiber/polyester composite pipes-effects of specimen geometry and preparation. J. Compos. Mater. 42(26), 2815–2827 (2008)CrossRefGoogle Scholar
  69. 69.
    Katzman, H.A., Castaneda, R.M., Lee, H.S.: Moisture diffusion in composite sandwich structures. Compos. A Appl. Sci. Manuf. 39(5), 887–892 (2008)CrossRefGoogle Scholar
  70. 70.
    Cruz, V.C.A.: Composites of polyester matrix with fibers of macambira (bromeliad laciniosa): modeling, simulation and experimentation. Doctorate Thesis in Process Enginerring. Federal University of Campina Grande, Campina Grande, Brazil (2013) (in Portuguese)Google Scholar
  71. 71.
    Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford (1975)MATHGoogle Scholar
  72. 72.
    Xiao, G.Z., Shanahan, M.E.R.: Swelling of DGEBA/DDA epoxy resin during hygrothermal ageing. Polymer 39(14), 3253–3260 (1998)CrossRefGoogle Scholar
  73. 73.
    Lima, A.G.B.: Phenomenon diffusion in solid spheroidal prolates. Case study: Banana drying. Ph.D. Thesis in Mechanical Engineering. State University of Campinas, Campinas (1999) (in Portuguese)Google Scholar
  74. 74.
    Maggana, C., Pissis, P.: Water sorption and diffusion studies in an epoxy resin system. J. Polym. Sci. Part B-Polym. Phys. 37(11), 1165–1182 (1999)CrossRefGoogle Scholar
  75. 75.
    Andrikson, G.A., Mochalov, V.P., Aniskevich, A.N.: Principle of modified time scale for tasks of nonstationary moisture diffusion in polymer materials. Mech. Compos. Mater. 1, 153–170 (1980) (in Russian)Google Scholar
  76. 76.
    Carter, H.G., Kibler, K.G.: Langmuir-type model for anomalous moisture diffusion in composite resins. J. Compos. Mater. 12(2), 118–131 (1978)CrossRefGoogle Scholar
  77. 77.
    Bonniau, P., Bunsell, A.R.: A comparative study of water absorption theories applied to glass epoxy composites. J. Compos. Mater. 15(3), 272–293 (1981)CrossRefGoogle Scholar
  78. 78.
    Cotinaud, M., Bonniau, P., Bunsell, A.R.: The effect of water absorption on the electrical properties of glass-fibre reinforced epoxy composites. J. Mater. Sci. 17(3), 867–877 (1982)CrossRefGoogle Scholar
  79. 79.
    Apicella, A., Estiziano, L., Nicolais, L., Tucci, V.: Environmental degradation of the electrical and thermal properties of organic insulating materials. J. Mater. Sci. 23(2), 729–735 (1988)CrossRefGoogle Scholar
  80. 80.
    Grace, L.R., Altan, M.C.: Characterization of anisotropic moisture absorption in polymeric composites using hindered diffusion model. Compos. A Appl. Sci. Manuf. 43(8), 1187–1196 (2012)CrossRefGoogle Scholar
  81. 81.
    Santos, W.R.G., Melo, R.Q.C., Lima, A.G.B.: Water absorption in polymer composites reinforced with vegetable fiber using Langmuir-type model: An exact mathematical treatment. Defect Diffus. Forum 371, 102–110 (2016)CrossRefGoogle Scholar
  82. 82.
    Perreux, D., Suri, C.: A study of the coupling between the phenomena of water absorption and damage in glass/epoxy composite pipes. Compos. Sci. Technol. 57(9–10), 1403–1413 (1997)CrossRefGoogle Scholar
  83. 83.
    Popineau, S., Rondeau-Mouro, C., Sulpice-Gaillet, C., Shanahan, M.E.: Free/bound water absorption in an epoxy adhesive. Polymer 46(24), 10733–10740 (2005)CrossRefGoogle Scholar
  84. 84.
    Fu, Z., Chen, W., Yang, H.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Zhu, S., Satravaha, P., Lu, X.: Solving linear diffusion equations with the dual reciprocity method in Laplace space. Eng. Anal. Bound. Elem. 13(1), 1–10 (1994)CrossRefGoogle Scholar
  86. 86.
    Melo, R.Q.C., Santos, W.R.G., Lima, A.G.B.: Applying the Lagmuir-type model on the water absorption in vegetable fiber reinforced polymer composites: A finite-volume approach. In: XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering, Florianópolis, Brazil, 5–8 Nov 2017Google Scholar
  87. 87.
    Silva, C.J.: Water absorption in composite materials of vegetal fiber: modeling and simulation via CFX. Master Dissertation in Mechanical Engineering. Federal University of Campina Grande, Brazil (2014) (in Portuguese)Google Scholar
  88. 88.
    Placette, M.D., Fan, X., Zhao J.H., Edwards, D.: A dual stage model of anomalous moisture diffusion and desorption in epoxy mold compounds. In: 12th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, Linz, Austria (2011)Google Scholar
  89. 89.
    Sanchez, E.M., Cavani, C.S., Leal, C.V., Sanchez, C.G.: Composites of unsaturated polyester resin with sugarcane bagasse: influence of fiber treatment on properties. Polymer 20(3), 194–200 (2010)Google Scholar
  90. 90.
    Kumosa, L., Benedikt, B., Armentrout, D., Kumosa, M.: Moisture absorption properties of unidirectional glass/polymer composites used in composite (non-ceramic) insulators. Compos. A Appl. Sci. Manuf. 35(9), 1049–1063 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • R. Q. C. Melo
    • 1
  • W. R. G. Santos
    • 2
  • Antonio Gilson Barbosa de Lima
    • 2
  • W. M. P. B. Lima
    • 2
  • J. V. Silva
    • 2
  • R. P. Farias
    • 3
  1. 1.Department of Materials EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  2. 2.Department of Mechanical EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  3. 3.Department of Agriculture ScienceState University of ParaibaCatolé do RochaBrazil

Personalised recommendations