Skip to main content

Ceramic Membranes: Theory and Engineering Applications

  • Chapter
  • First Online:
Transport Phenomena in Multiphase Systems

Abstract

Porous membranes are equipment used to separate different phases, restricting, totally or partially, the transport of one or more species present in a fluid solution. Separation processes can be classified in microfiltration, ultrafiltration, nanofiltration and reverse osmosis Filtration using porous membranes has presented promising results in many industrial sectors, especially in water treatment. This chapter provides theoretical and experimental information about ceramic and polymer membranes, with particular reference to separation process. Herein, several topics related to this theme, such as, theory, experiments, macroscopic mathematical modeling, and technological applications are presented and well discussed. CFD simulations of the water/oil separation process using a tubular ceramic membrane have been performed. The study clarified the importance of the CFD technique to elucidate the fluid flow phenomena in porous membrane as used in liquid filtration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Habert, A.C., Borges, C.P., Nobrega, R.: Membrane separation processes. E-papers, Brazil, Rio de Janeiro (2006) (in Portuguese)

    Google Scholar 

  2. Timoteo, J.F.J.: Anodizing for the production of ceramic membranes, p. 69. Masters dissertation, Mechanical engineering, UFRN, Rio Grande do Norte, Brazil (2007) (in Portuguese)

    Google Scholar 

  3. Park, J.Y., Jin Choi, S., Reum Park, B.: Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment. Desalination 202(1–3), 207–214 (2007)

    Article  Google Scholar 

  4. Ma, W., Guo, Z., Zhao, J., Yu, Q., Wang, F., Han, J., Pan, H., Yao, J., Zhang, Q., Samal, S. K., De Smedt, S.C., Huang, C.: Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Sep. Purif. Technol. 177, 71–85 (2017)

    Article  Google Scholar 

  5. Jiang, Y., Hou, J., Xu, J., Shan, B.: Switchable oil/water separation with efficient and robust Janus nanofiber membranes. Carbon 115, 477–485 (2017)

    Article  Google Scholar 

  6. Cheng, Q., Ye, D., Chang, C., Zhang, L.: Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. J. Membr. Sci. 525, 1–8 (2017)

    Article  Google Scholar 

  7. Matos, M., Gutiérrez, G., Lobo, A., Coca, J., Pazos, C., Benito, J.M.: Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. J. Membr. Sci. 520, 749–759 (2016)

    Article  Google Scholar 

  8. Zhu, X., Dudchenko, A., Gu, X., Jassby, D.: Surfactant-stabilized oil separation from water using ultrafiltration and nanofiltration. J. Membr. Sci. 529, 159–169 (2017)

    Article  Google Scholar 

  9. Darcovich, K., Dal-Cin, M.M., Ballevre, S., Wavelet, J.P.: CFD assisted thin channel membrane characterization module. J. Membr. Sci. 124(2), 181–193 (1997)

    Article  Google Scholar 

  10. Geraldes, V., Semião, V., Pinho, M.N.: Numerical modeling of mass transfer in slits with semi-permeable membrane walls. Eng. Comput. 17(3), 192–217 (2000)

    Article  Google Scholar 

  11. Serra, C.A., Wiesner, M.R., Laîné, J.M.: Rotating membrane disk filters: design evaluation using computational fluid dynamics. Chem. Eng. J. 72(1), 1–17 (1999)

    Article  Google Scholar 

  12. Serra, C.A., Wiesner, M.R.: A comparison of rotating and stationary membrane disk filters using computational fluid dynamics. J. Membr. Sci. 165(1), 19–29 (2000)

    Article  Google Scholar 

  13. Bellhouse, B.J., Costigan, G., Abhinava, K., Merry, A.: The performance of helical screw-thread inserts in tubular membranes. Sep. Purif. Technol. 22–23, 89–113 (2001)

    Article  Google Scholar 

  14. De Souza, J.S.: Theoretical study of the microfiltration process in ceramic membranes, p. 134. Doctoral Thesis, Process Engineering, UFCG, Paraíba, Brazil (2014) (in Portuguese)

    Google Scholar 

  15. Magalhães, H.L.F.: Study of the thermofluidodynamics of the treatment of effluents using ceramic membranes: modeling and simulation, p. 102. Masters dissertation in Mechanical Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2017) (in Portuguese)

    Google Scholar 

  16. Taketa, T.B., Ferreira, M.Z., Gomes, M.C.S., Curvelo, N.: Production of biodiesel by ethyl transesterification of vegetable oils and their separation and purification by ceramic membranes. In: VIII Brazilian Congress of Chemical Engineering in Scientific Initiation, Uberlândia, Minas Gerais, Brasil (2009) (in Portuguese)

    Google Scholar 

  17. De Carvalho, R.B., Cristiano, P.B., Nobrega, R.: Formation of double-spreading cellulosic flat membranes for nanofiltration and reverse osmosis processes. Polymers 11(2), 65–75 (2001) (in Portuguese)

    Google Scholar 

  18. Lopes, A.C.: Degradation study of polymeric membranes of commercial nanofiltration by sodium hypochlorite, p. 92. Master dissertation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (2006) (in Portuguese)

    Google Scholar 

  19. Mierzwa, J.C., Da Silva, M.C.C., Rodrigues, L.D.B., Hespanhol, I.: Water treatment for public supply by ultrafiltration: comparative evaluation through the direct costs of implantation and operation with the conventional and conventional systems with activated carbon. Sanitary Environ. Eng. 13(1), 78–87 (2008) (in Portuguese)

    Google Scholar 

  20. Rosa, D.S., Salvini, V.R., Pandolfelli, V.C.: Processing and evaluation of the properties of porous ceramic tubes for microfiltration of emulsions. Ceramics 52(322), 167–171 (2006) (in Portuguese)

    Article  Google Scholar 

  21. Makabe, R., Akamatsu, K., Nakao, S.: Classification and diafiltration of polydispersed particles using cross-flow microfiltration under high flow rate. J. Membr. Sci. 523, 8–14 (2017)

    Article  Google Scholar 

  22. Yang, X., Zhou, S., Li, M., Wang, R., Zhao, Y.: Purification of cellulase fermentation broth via low cost ceramic microfiltration membranes with nanofibers-like attapulgite separation layers. Sep. Purif. Technol. 175, 435–442 (2017)

    Article  Google Scholar 

  23. Wang, X., Wang, C., Tang, C.Y., Hu, T., Li, X., Ren, Y.: Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low strength wastewater treatment. J. Membr. Sci. 527, 1–7 (2017)

    Article  Google Scholar 

  24. Suresh, K., Pugazhenthi, G., Uppaluri, R.: Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: parametric optimization using response surface methodology. J. Water Process Eng. 13, 27–43 (2016)

    Article  Google Scholar 

  25. Suresh, K., Pugazhenthi, G.: Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane. Egypt. J. Petrol. 14(1), 1–10 (2016)

    Google Scholar 

  26. Becker, C.M.: Obtaining and characterizing sulphonated polyelectrolytes based on styrenic copolymers for polymer membranes, p. 96. Masters dissertation, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (2007) (in Portuguese)

    Google Scholar 

  27. Leite, A.M.D., Ito, E.N., Araújo, E.M., Lira, H. De L., Barbosa, R.: Obtaining microporous membranes from nanocomposites of polyamide 6/national clay. Part 1: influence of clay presence on membrane morphology. Polymers 19(4), 271–277 (2009) (in Portuguese)

    Google Scholar 

  28. Perles, C.E.: Physical and chemical properties related to the development of Nafion® membranes for PEMFC fuel cell applications. Polymers 18(4), 281–288 (2008) (in Portuguese)

    Google Scholar 

  29. Silva, A.A., Melo, K.S., Maia, J.B.N.: Study of the water/oil separation potential of alumina tubular ceramic membranes through analysis of flow and turbidity measurements. In: 2º Brazilian Congress of P & D in Oil & Gas. Rio de Janeiro: UFRJ, Rio de Janeiro, Brazil (2003) (in Portuguese)

    Google Scholar 

  30. Cui, J., Zhang, X., Liu, H., Liu, S., Yeung, K.L.: Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. J. Membr. Sci. 325(1), 420–426 (2008)

    Article  Google Scholar 

  31. Silva, F.A., Lira, H.L.: Preparation and characterization of cordierite ceramic membranes. Ceramics 52(324), 276–282 (2006) (in Portuguese)

    Article  Google Scholar 

  32. Zhu, L., Chen, M., Dong, Y., Tang, C.Y., Huang, A., Li, L.: A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in water emulsion. Water Res. 90, 277–285 (2016)

    Article  Google Scholar 

  33. Maia, D.F.: Development of ceramic membranes for oil/water separation, p. 111. Doctorate Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2006) (in Portuguese)

    Google Scholar 

  34. Chen, H., Jia, X., Wei, M., Wang, Y.: Ceramic tubular nanofiltration membranes with tunable performances by atomic layer deposition and calcination. J. Membr. Sci. 528, 95–102 (2017)

    Article  Google Scholar 

  35. Hwang, S.T., Kammermeyer, K.: Membranes in Separation. Wiley, Canada (1975)

    Google Scholar 

  36. Damak, K., Ayadi, A., Schmitz, P., Zeghmati, B.: Modeling of cross-flow membrane separation processes under laminar flow conditions in tubular membrane. Desalination 168, 231–239 (2004)

    Article  Google Scholar 

  37. Mulder, M.: Basic Principles of Membrane Technology, 1st edn. Kluwer Academic Publishers, Netherlands (1996)

    Book  Google Scholar 

  38. Adams, M.C., Barbano, D.M.: Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration. J. Dairy Sci. 99(1), 167–182 (2016)

    Article  Google Scholar 

  39. Oliveira, D.R.: Pre-treatment of the reverse osmosis process using microfiltration and investigation of membrane cleaning and recovery techniques, p. 129. Master dissertation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (2007) (in Portuguese)

    Google Scholar 

  40. Ahmed, S., Seraji, M.T., Jahedi, J., Hashib, M.A.: Application of CFD for simulation of a baffled tubular membrane. Chem. Eng. Res. Des. 90(5), 600–608 (2012)

    Article  Google Scholar 

  41. Ebrahimi, M., Busse, N., Kerker, S., Schmitz, O., Hilpert, M., Czermak, P.: Treatment of the bleaching effluent from sulfite pulp production by ceramic membrane filtration. MDPI Membr. 7, 1–15 (2015)

    Google Scholar 

  42. Unlu, M., Yukseler, H., Yetis, U.: Indigo dyeing wastewater reclamation by membrane-based filtration and coagulation processes. Desalination 240, 178–185 (2009)

    Article  Google Scholar 

  43. Silva, M.C., Oliveira, R.C., Lira, H.L., Freitas, N.L.: Obtaining a ceramic membrane to treat effluent from the textile industry. Electron. J. Mater. Process. 9, 81–85 (2014) (in Portuguese)

    Google Scholar 

  44. Meksi, N., Ben Ticha, M., Kechida, M., Mhenni, M.F.: Using of ecofriendly α-hydroxycarbonyls as reducing agents to replace sodium dithionite in indigo dyeing processes. J. Clean. Prod. 24, 149–158 (2012)

    Article  Google Scholar 

  45. Lee, M., Wu, Z., Li, K.: Advances in membrane technologies for water treatment: materials, processes and applications. In: Advances in Ceramic Membranes for Water Treatment, vol. 1, pp. 43–82, 1st edn. Woodhead Publishing, England (2015)

    Chapter  Google Scholar 

  46. Kumar, R. V., Goswami, L., Pakshirajanb, K., Pugazhenthi, G.: Dairy wastewater treatment using a novel low cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models. J. Water Process Eng. 13, 168–175 (2016)

    Article  Google Scholar 

  47. Jamaly, S., Giwa, A., Hasan, S.W.: Recent improvements in oily wastewater treatment: progress, challenges, and future opportunities. J. Environ. Sci. 37, 15–30 (2015)

    Article  Google Scholar 

  48. CONAMA No20/ART.21, RE. Standard CONAMA n°20, de June 18, Brazil (1986) (in Portuguese)

    Google Scholar 

  49. Damak, K., Ayadi, A., Zeghmati, B., Schmitz, P.: Concentration polarisation in tubular membranes—a numerical approach. Desalination 171(2), 139–153 (2004)

    Article  Google Scholar 

  50. Cunha, A.L.: Treatment of effluents from the petroleum industry via ceramic membranes—modeling and simulation, p. 201. Doctorate Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2014) (in Portuguese)

    Google Scholar 

  51. Pak, A., Mohammad, T., Hosseinalipour, S.M., Allahdinib, V.: CFD modeling of porous membranes. Desalination 222(1–3), 482–488 (2008)

    Article  Google Scholar 

  52. Ansys: CFX 15, Solver Theory Guide. Ansys, Japan (2015)

    Google Scholar 

  53. Damak, K., Ayadi, A., Zeghmati, B., Schmitz, P.: New Navier-Stokes and Darcy’s law combined model for fluid flow in cross-flow filtration tubular membranes. Desalination 161(1), 67–77 (2004)

    Article  Google Scholar 

  54. Minnikanti, V.S., Dasgupta, S., De, S.: Prediction of mass transfer coefficient with suction for turbulent flow in cross flow ultrafiltration. J. Membr. Sci. 154(2), 227–239 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support provided by CNPq, CAPES and FINEP (Brazilian Research Agencies). We also acknowledge scientific support from the authors mentioned along this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gilson Barbosa de Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magalhães, H.L.F., Barbosa de Lima, A.G., de Farias Neto, S.R., de Almeida, A.F., de Andrade, T.H.F., Brandão, V.A.A. (2018). Ceramic Membranes: Theory and Engineering Applications. In: Delgado, J., Barbosa de Lima, A. (eds) Transport Phenomena in Multiphase Systems. Advanced Structured Materials, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-319-91062-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91062-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91061-1

  • Online ISBN: 978-3-319-91062-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics