Ceramic Membranes: Theory and Engineering Applications

  • H. L. F. Magalhães
  • Antonio Gilson Barbosa de Lima
  • S. R. de Farias Neto
  • A. F. de Almeida
  • T. H. F. de Andrade
  • V. A. A. Brandão
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 93)


Porous membranes are equipment used to separate different phases, restricting, totally or partially, the transport of one or more species present in a fluid solution. Separation processes can be classified in microfiltration, ultrafiltration, nanofiltration and reverse osmosis Filtration using porous membranes has presented promising results in many industrial sectors, especially in water treatment. This chapter provides theoretical and experimental information about ceramic and polymer membranes, with particular reference to separation process. Herein, several topics related to this theme, such as, theory, experiments, macroscopic mathematical modeling, and technological applications are presented and well discussed. CFD simulations of the water/oil separation process using a tubular ceramic membrane have been performed. The study clarified the importance of the CFD technique to elucidate the fluid flow phenomena in porous membrane as used in liquid filtration processes.


Membrane Separation process Filtration CFD simulation 



The authors are grateful for financial support provided by CNPq, CAPES and FINEP (Brazilian Research Agencies). We also acknowledge scientific support from the authors mentioned along this chapter.


  1. 1.
    Habert, A.C., Borges, C.P., Nobrega, R.: Membrane separation processes. E-papers, Brazil, Rio de Janeiro (2006) (in Portuguese)Google Scholar
  2. 2.
    Timoteo, J.F.J.: Anodizing for the production of ceramic membranes, p. 69. Masters dissertation, Mechanical engineering, UFRN, Rio Grande do Norte, Brazil (2007) (in Portuguese)Google Scholar
  3. 3.
    Park, J.Y., Jin Choi, S., Reum Park, B.: Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment. Desalination 202(1–3), 207–214 (2007)CrossRefGoogle Scholar
  4. 4.
    Ma, W., Guo, Z., Zhao, J., Yu, Q., Wang, F., Han, J., Pan, H., Yao, J., Zhang, Q., Samal, S. K., De Smedt, S.C., Huang, C.: Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Sep. Purif. Technol. 177, 71–85 (2017)CrossRefGoogle Scholar
  5. 5.
    Jiang, Y., Hou, J., Xu, J., Shan, B.: Switchable oil/water separation with efficient and robust Janus nanofiber membranes. Carbon 115, 477–485 (2017)CrossRefGoogle Scholar
  6. 6.
    Cheng, Q., Ye, D., Chang, C., Zhang, L.: Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. J. Membr. Sci. 525, 1–8 (2017)CrossRefGoogle Scholar
  7. 7.
    Matos, M., Gutiérrez, G., Lobo, A., Coca, J., Pazos, C., Benito, J.M.: Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. J. Membr. Sci. 520, 749–759 (2016)CrossRefGoogle Scholar
  8. 8.
    Zhu, X., Dudchenko, A., Gu, X., Jassby, D.: Surfactant-stabilized oil separation from water using ultrafiltration and nanofiltration. J. Membr. Sci. 529, 159–169 (2017)CrossRefGoogle Scholar
  9. 9.
    Darcovich, K., Dal-Cin, M.M., Ballevre, S., Wavelet, J.P.: CFD assisted thin channel membrane characterization module. J. Membr. Sci. 124(2), 181–193 (1997)CrossRefGoogle Scholar
  10. 10.
    Geraldes, V., Semião, V., Pinho, M.N.: Numerical modeling of mass transfer in slits with semi-permeable membrane walls. Eng. Comput. 17(3), 192–217 (2000)CrossRefGoogle Scholar
  11. 11.
    Serra, C.A., Wiesner, M.R., Laîné, J.M.: Rotating membrane disk filters: design evaluation using computational fluid dynamics. Chem. Eng. J. 72(1), 1–17 (1999)CrossRefGoogle Scholar
  12. 12.
    Serra, C.A., Wiesner, M.R.: A comparison of rotating and stationary membrane disk filters using computational fluid dynamics. J. Membr. Sci. 165(1), 19–29 (2000)CrossRefGoogle Scholar
  13. 13.
    Bellhouse, B.J., Costigan, G., Abhinava, K., Merry, A.: The performance of helical screw-thread inserts in tubular membranes. Sep. Purif. Technol. 22–23, 89–113 (2001)CrossRefGoogle Scholar
  14. 14.
    De Souza, J.S.: Theoretical study of the microfiltration process in ceramic membranes, p. 134. Doctoral Thesis, Process Engineering, UFCG, Paraíba, Brazil (2014) (in Portuguese)Google Scholar
  15. 15.
    Magalhães, H.L.F.: Study of the thermofluidodynamics of the treatment of effluents using ceramic membranes: modeling and simulation, p. 102. Masters dissertation in Mechanical Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2017) (in Portuguese)Google Scholar
  16. 16.
    Taketa, T.B., Ferreira, M.Z., Gomes, M.C.S., Curvelo, N.: Production of biodiesel by ethyl transesterification of vegetable oils and their separation and purification by ceramic membranes. In: VIII Brazilian Congress of Chemical Engineering in Scientific Initiation, Uberlândia, Minas Gerais, Brasil (2009) (in Portuguese)Google Scholar
  17. 17.
    De Carvalho, R.B., Cristiano, P.B., Nobrega, R.: Formation of double-spreading cellulosic flat membranes for nanofiltration and reverse osmosis processes. Polymers 11(2), 65–75 (2001) (in Portuguese)Google Scholar
  18. 18.
    Lopes, A.C.: Degradation study of polymeric membranes of commercial nanofiltration by sodium hypochlorite, p. 92. Master dissertation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (2006) (in Portuguese)Google Scholar
  19. 19.
    Mierzwa, J.C., Da Silva, M.C.C., Rodrigues, L.D.B., Hespanhol, I.: Water treatment for public supply by ultrafiltration: comparative evaluation through the direct costs of implantation and operation with the conventional and conventional systems with activated carbon. Sanitary Environ. Eng. 13(1), 78–87 (2008) (in Portuguese)Google Scholar
  20. 20.
    Rosa, D.S., Salvini, V.R., Pandolfelli, V.C.: Processing and evaluation of the properties of porous ceramic tubes for microfiltration of emulsions. Ceramics 52(322), 167–171 (2006) (in Portuguese)CrossRefGoogle Scholar
  21. 21.
    Makabe, R., Akamatsu, K., Nakao, S.: Classification and diafiltration of polydispersed particles using cross-flow microfiltration under high flow rate. J. Membr. Sci. 523, 8–14 (2017)CrossRefGoogle Scholar
  22. 22.
    Yang, X., Zhou, S., Li, M., Wang, R., Zhao, Y.: Purification of cellulase fermentation broth via low cost ceramic microfiltration membranes with nanofibers-like attapulgite separation layers. Sep. Purif. Technol. 175, 435–442 (2017)CrossRefGoogle Scholar
  23. 23.
    Wang, X., Wang, C., Tang, C.Y., Hu, T., Li, X., Ren, Y.: Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low strength wastewater treatment. J. Membr. Sci. 527, 1–7 (2017)CrossRefGoogle Scholar
  24. 24.
    Suresh, K., Pugazhenthi, G., Uppaluri, R.: Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: parametric optimization using response surface methodology. J. Water Process Eng. 13, 27–43 (2016)CrossRefGoogle Scholar
  25. 25.
    Suresh, K., Pugazhenthi, G.: Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane. Egypt. J. Petrol. 14(1), 1–10 (2016)Google Scholar
  26. 26.
    Becker, C.M.: Obtaining and characterizing sulphonated polyelectrolytes based on styrenic copolymers for polymer membranes, p. 96. Masters dissertation, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (2007) (in Portuguese)Google Scholar
  27. 27.
    Leite, A.M.D., Ito, E.N., Araújo, E.M., Lira, H. De L., Barbosa, R.: Obtaining microporous membranes from nanocomposites of polyamide 6/national clay. Part 1: influence of clay presence on membrane morphology. Polymers 19(4), 271–277 (2009) (in Portuguese)Google Scholar
  28. 28.
    Perles, C.E.: Physical and chemical properties related to the development of Nafion® membranes for PEMFC fuel cell applications. Polymers 18(4), 281–288 (2008) (in Portuguese)Google Scholar
  29. 29.
    Silva, A.A., Melo, K.S., Maia, J.B.N.: Study of the water/oil separation potential of alumina tubular ceramic membranes through analysis of flow and turbidity measurements. In: 2º Brazilian Congress of P & D in Oil & Gas. Rio de Janeiro: UFRJ, Rio de Janeiro, Brazil (2003) (in Portuguese)Google Scholar
  30. 30.
    Cui, J., Zhang, X., Liu, H., Liu, S., Yeung, K.L.: Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. J. Membr. Sci. 325(1), 420–426 (2008)CrossRefGoogle Scholar
  31. 31.
    Silva, F.A., Lira, H.L.: Preparation and characterization of cordierite ceramic membranes. Ceramics 52(324), 276–282 (2006) (in Portuguese)CrossRefGoogle Scholar
  32. 32.
    Zhu, L., Chen, M., Dong, Y., Tang, C.Y., Huang, A., Li, L.: A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in water emulsion. Water Res. 90, 277–285 (2016)CrossRefGoogle Scholar
  33. 33.
    Maia, D.F.: Development of ceramic membranes for oil/water separation, p. 111. Doctorate Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2006) (in Portuguese)Google Scholar
  34. 34.
    Chen, H., Jia, X., Wei, M., Wang, Y.: Ceramic tubular nanofiltration membranes with tunable performances by atomic layer deposition and calcination. J. Membr. Sci. 528, 95–102 (2017)CrossRefGoogle Scholar
  35. 35.
    Hwang, S.T., Kammermeyer, K.: Membranes in Separation. Wiley, Canada (1975)Google Scholar
  36. 36.
    Damak, K., Ayadi, A., Schmitz, P., Zeghmati, B.: Modeling of cross-flow membrane separation processes under laminar flow conditions in tubular membrane. Desalination 168, 231–239 (2004)CrossRefGoogle Scholar
  37. 37.
    Mulder, M.: Basic Principles of Membrane Technology, 1st edn. Kluwer Academic Publishers, Netherlands (1996)CrossRefGoogle Scholar
  38. 38.
    Adams, M.C., Barbano, D.M.: Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration. J. Dairy Sci. 99(1), 167–182 (2016)CrossRefGoogle Scholar
  39. 39.
    Oliveira, D.R.: Pre-treatment of the reverse osmosis process using microfiltration and investigation of membrane cleaning and recovery techniques, p. 129. Master dissertation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (2007) (in Portuguese)Google Scholar
  40. 40.
    Ahmed, S., Seraji, M.T., Jahedi, J., Hashib, M.A.: Application of CFD for simulation of a baffled tubular membrane. Chem. Eng. Res. Des. 90(5), 600–608 (2012)CrossRefGoogle Scholar
  41. 41.
    Ebrahimi, M., Busse, N., Kerker, S., Schmitz, O., Hilpert, M., Czermak, P.: Treatment of the bleaching effluent from sulfite pulp production by ceramic membrane filtration. MDPI Membr. 7, 1–15 (2015)Google Scholar
  42. 42.
    Unlu, M., Yukseler, H., Yetis, U.: Indigo dyeing wastewater reclamation by membrane-based filtration and coagulation processes. Desalination 240, 178–185 (2009)CrossRefGoogle Scholar
  43. 43.
    Silva, M.C., Oliveira, R.C., Lira, H.L., Freitas, N.L.: Obtaining a ceramic membrane to treat effluent from the textile industry. Electron. J. Mater. Process. 9, 81–85 (2014) (in Portuguese)Google Scholar
  44. 44.
    Meksi, N., Ben Ticha, M., Kechida, M., Mhenni, M.F.: Using of ecofriendly α-hydroxycarbonyls as reducing agents to replace sodium dithionite in indigo dyeing processes. J. Clean. Prod. 24, 149–158 (2012)CrossRefGoogle Scholar
  45. 45.
    Lee, M., Wu, Z., Li, K.: Advances in membrane technologies for water treatment: materials, processes and applications. In: Advances in Ceramic Membranes for Water Treatment, vol. 1, pp. 43–82, 1st edn. Woodhead Publishing, England (2015)CrossRefGoogle Scholar
  46. 46.
    Kumar, R. V., Goswami, L., Pakshirajanb, K., Pugazhenthi, G.: Dairy wastewater treatment using a novel low cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models. J. Water Process Eng. 13, 168–175 (2016)CrossRefGoogle Scholar
  47. 47.
    Jamaly, S., Giwa, A., Hasan, S.W.: Recent improvements in oily wastewater treatment: progress, challenges, and future opportunities. J. Environ. Sci. 37, 15–30 (2015)CrossRefGoogle Scholar
  48. 48.
    CONAMA No20/ART.21, RE. Standard CONAMA n°20, de June 18, Brazil (1986) (in Portuguese)Google Scholar
  49. 49.
    Damak, K., Ayadi, A., Zeghmati, B., Schmitz, P.: Concentration polarisation in tubular membranes—a numerical approach. Desalination 171(2), 139–153 (2004)CrossRefGoogle Scholar
  50. 50.
    Cunha, A.L.: Treatment of effluents from the petroleum industry via ceramic membranes—modeling and simulation, p. 201. Doctorate Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2014) (in Portuguese)Google Scholar
  51. 51.
    Pak, A., Mohammad, T., Hosseinalipour, S.M., Allahdinib, V.: CFD modeling of porous membranes. Desalination 222(1–3), 482–488 (2008)CrossRefGoogle Scholar
  52. 52.
    Ansys: CFX 15, Solver Theory Guide. Ansys, Japan (2015)Google Scholar
  53. 53.
    Damak, K., Ayadi, A., Zeghmati, B., Schmitz, P.: New Navier-Stokes and Darcy’s law combined model for fluid flow in cross-flow filtration tubular membranes. Desalination 161(1), 67–77 (2004)CrossRefGoogle Scholar
  54. 54.
    Minnikanti, V.S., Dasgupta, S., De, S.: Prediction of mass transfer coefficient with suction for turbulent flow in cross flow ultrafiltration. J. Membr. Sci. 154(2), 227–239 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • H. L. F. Magalhães
    • 1
  • Antonio Gilson Barbosa de Lima
    • 2
  • S. R. de Farias Neto
    • 1
  • A. F. de Almeida
    • 1
  • T. H. F. de Andrade
    • 3
  • V. A. A. Brandão
    • 2
  1. 1.Department of Chemical EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  2. 2.Department of Mechanical EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  3. 3.Department of Petroleum EngineeringFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations