Skip to main content

Molecular Mechanisms of Gastrointestinal Signaling

  • Chapter
  • First Online:
Gastrointestinal Physiology

Abstract

The epithelial cells of the gastrointestinal (GI) tract communicate with each other and with cells of other organs via a complex network of highly regulated movement of ions and biomolecules. The molecules ensure regulated activity of cells, tissues, and organs of the GI system and the body as whole. The regulated movement and subsequent activities of the biomolecules released from one cell to the target are made possible by receptive substances (receptors) localized on the membrane of the target cells or intracellular organelles, or in the cytosol. This process, which is referred to as cell-to-cell communication or cellular signaling, ensures the regulated functioning of the cells and tissues of the GI system and the whole organism. This chapter is dedicated to the mechanism of cell-to-cell communication and signaling in normal and relates it to how disease develops. Basic mechanisms of GI epithelial cell signaling and gut nutrient receptor sensing (GI chemosensation) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine type

7TM:

Seven transmembrane

ADAM:

A disintegrin and metalloproteinase protein

Akt:

“Ak” (mouse bred) that developed thymoma (“t”)

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ANP:

Atrial natriuretic peptide

APC:

Adenomatous polyposis coli

ATF3:

Activating transcription factor 3

BMP:

Bone morphogenic protein

BNP:

Brain natriuretic peptide

CaM:

Calmodulin

CaMK:

Calcium/calmodulin-dependent protein kinases

cAMP:

Cyclic adenosine monophosphate

CaSR:

Calcium-sensing receptor of aromatic amino acid

CBPs:

Ca2+-binding proteins

CCK:

Cholecystokinin

CDK:

Cyclin-dependent kinase

CFTR:

Cystic fibrosis transmembrane conductance regulator

cGMP:

Cyclic guanosine monophosphate

CLK:

CDK-like kinase

CNP:

C-type natriuretic peptide

CO:

Carbon monoxide

CRAC:

Ca2+ release-activated Ca2+

CREB:

CAMP response element-binding protein

CSL:

(CBF1/Su(H)/Lag-1) C promoter Binding Factor-1, Suppressor of Hairless, Longevity-Assurance Gene

DAG:

Diacylglycerol

Dhh:

Desert Hedgehog

Dll-1-4:

Delta/Delta-like

Dvl or Dsh:

Disheveled

EGF:

Epidermal growth factor

EPAC:

Cyclic nucleotide-gated ion channels and exchange proteins activated by cAMP

ER:

Endoplasmic reticulum

ErbB:

Erythroblastic leukemia viral oncogene

ERK:

Extracellular receptor kinase

FABP:

Fatty acid-binding proteins

FAK:

Focal adhesion kinase

FDA:

Food and Drug Administration

FFAR:

Fatty Acid Transport Protein

FGF:

Fibroblast growth factor

FRAP1:

FK506-binding protein 12-rapamycin-associated protein 1

Fzd:

Frizzled

GABA:

Gamma-aminobutyric acid

GAG:

Glycosaminoglycan

GAPs:

GTPase-activating proteins

GBP:

GSK-3-binding proteins

GC:

Guanylate cyclase

GDI:

Guanine nucleotide dissociation inhibitor

GDNF:

Glial-derived neurotrophic factor

GDP:

Guanosine 5′-diphosphate

GEFs:

Guanine nucleotide exchange factors

GIP:

Glucose-dependent insulinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

GPBAR-1:

G protein-coupled bile acid receptor 1

GPCR:

G protein (guanine nucleotide-binding protein) coupled receptor

GRKs:

GPCR kinases

GSK3:

Glycolgen synthase kinase 3

GSK-3β:

Glycogen synthase kinase-3β

GTP:

Guanosine 5-triphosphate

HGF:

Hepatocyte growth factor

Hh:

Hedgehog

HMG:

High mobility group

HS:

Heparan sulfate

HSPGs:

Heparan sulfate proteoglycans

ICAM:

Intercellular adhesion molecules

ICD:

Intracellular domain of the notch receptor

Ig:

Immunoglobulin

IGF1R:

Insulin-like growth factor

IGF-2:

Insulin-like growth factor-2

Ihh:

Indian Hedgehog

IL:

Interleukins

ILK:

Integrin-linked kinase

IP3:

Inositol 1,4,5-trisphosphate

IP3R:

IP3 receptor

IRAG:

Nitric oxide

IRS1:

Insulin receptor substrate 1

Jag-1, Jag-2:

Jagged

JAK:

Janus kinase

LCFA:

Long-chain fatty acid

LEF:

Lymphoid enhancer factor

MAML:

Mastermind-like

MAPK:

Mitogen-activated protein kinase

M-BAR:

Membrane-type receptor for bile acids

MCT:

Medium chain triglyceride

mTOR:

Mechanistic or mammalian target of rapamycin

NAADP:

Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate

nAChRs:

Nicotinic acetylcholine receptors

NAD+:

Nicotinamide adenine dinucleotide

N-CAM:

Neural cell adhesion molecule

NFAT:

Nuclear factor of activated T cell

NGF:

Neuronal growth factor

NMDA:

N-methyl-d-aspartate

NO:

IP3R-associated cGMP kinase substrate

NO:

Nitric oxide

NT-3:

Neurotrophin-3

P2X receptors:

ATP-gated channels

PDGF:

Platelet-derived growth factor

PI-3-K:

Phosphoinositide-3-kinase

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PKA:

Protein kinase A

PKC:

Protein kinase C

PKG:

Protein kinase G

PLC:

Phospholipase C

PPAR:

Peroxisome proliferator-activated receptors

PTB:

Phosphotyrosine binding

Ras:

Rat sarcoma

RBPJ:

Jκ immunoglobulin gene

RSTK:

Receptor serine/threonine kinase

RTK:

Receptor tyrosine kinase

SARAF:

Store-operated calcium entry-associated regulatory factor

SCF (also called c-kit):

Stem cell factor

SCFA:

Short chain fatty acid

SGLT1:

Sodium glucose cotransporter type 1

SH2:

Src homology 2

Shh:

Sonic hedgehog

Shh:

Sonic Hedgehog

SIM:

Stromal interacting molecule (previous name for STIMI1)

SOCE:

Store-operated calcium channel

STa:

Bacterial heat-stable enterotoxins

STAT:

Signal transducers and activators of transcription

STIM1:

Stromal interaction molecule 1

TCF:

T cell factor

TGF-beta:

Transforming growth factor beta

TKI:

Tyrosine kinase inhibitors

TMEM66:

Transmembrane protein 66

TNFs:

Tumor necrosis factors

TRP:

Transient Receptor Potential

TRPV1:

Transient Receptor Potential Valinoid type 1

TSC1-TSC2:

Tuberous sclerosis complex subunit 1 and 2

VCAM:

Vascular cell adhesion molecule

VEGF:

Vascular endothelial growth factor

Wif-1 & 2:

Wnt inhibitory factor 1 and 2

Wnt:

Wingless-related integration site

Bibliography

  1. Banghart MR, Volgraf M, Trauner D (2006) Engineering light-gated ion channels. Biochemistry 45(51):15129–15141

    Article  PubMed  CAS  Google Scholar 

  2. Chen M, Lin S, Hofestaedt R (2004) STCDB: signal transduction classification database. Nucleic Acids Res 32:D456–D458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lim W, Mayer B, Pawson T (2014) Cell signaling—principles and mechnaisms. Garland Science, New York, USA

    Google Scholar 

  4. Hancock JT (2016) Cell signaling, 4th edn. Oxford University Press, New York, USA

    Google Scholar 

  5. Mooren FC (2016) Intercellular signaling. In: Mooren F (ed) Encyclopedia of exercise medicine in health and disease. Springer, Heidelberg, USA

    Google Scholar 

  6. Jobst EE, Enriori PJ, Cowley MA (2004) The electrophysiology of feeding circuits. Trends Endocrinol Metab 15(10):488–499

    Article  PubMed  CAS  Google Scholar 

  7. Nuche-Berenguer B, Jensen RT (2015) Gastrointestinal hormones/neurotransmitters and growth factors can activate P21 activated kinase 2 in pancreatic acinar cells by novel mechanisms. Biochim Biophys Acta 1853(10):2371–2382

    Article  CAS  Google Scholar 

  8. Nezami BG, Srinivasan S (2010) Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr Gastroenterol Rep 12(5):358–365

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mace OJ, Tehan B, Marshall F (2015) Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol Res Perspect 3(4):e00155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117(1):13–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Psichas A, Reimann F, Gribble FM (2015) Gut chemosensing mechanisms. J Clin Invest 125(3):908–917

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gribble FM, Reimann F (2016) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299

    Article  PubMed  CAS  Google Scholar 

  13. Nøhr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS et al (2013) GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells versus FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154(10):3552–3564

    Article  PubMed  CAS  Google Scholar 

  14. Hill SJ (2006) G-protein-coupled receptors: past, present and future. Br J Pharmacol 147(Suppl 1):S27–S37

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Boycott BB (1998) John Zachary Young. 18 March 1907–4 July 1997. Biogr Mem Fellows R Soc 44:487–509

    Article  PubMed  CAS  Google Scholar 

  16. Young JZ (1992) Sources of discovery in neuroscience. In: Worden FG, Swazey JP, Adelman G (eds) The neurosciences: paths of discovery, I. Birkhäuser, Boston, USA

    Google Scholar 

  17. Ling G, Gerard RW (1949) The normal membrane potential of frog sartorius fibers. J Cell Physiol 34(3):383–396

    Article  CAS  Google Scholar 

  18. Ling G, Gerard RW (1949) The membrane potential and metabolism of muscle fibers. J cellular Physiol 34(3):413–438

    Article  CAS  Google Scholar 

  19. Ling G, Gerard RW (1950) External potassium and the membrane potential of single muscle fibres. Nature 165:113–114

    Article  PubMed  CAS  Google Scholar 

  20. Edwards C (1983) Who invented the intracellular microelectrode? Trends Neurosci 6:44

    Article  Google Scholar 

  21. Verkhratsky A, Parpura V (2014) History of electrophysiology and the patch clamp. Methods Mol Biol 1183:1–19

    Article  PubMed  CAS  Google Scholar 

  22. Rall JA (2014) Excitation-contraction coupling and the role of calcium in contraction and relaxation in the 1950s and 1960s. Mechanism of muscular contraction part of the series perspectives in physiology. Springer, New York

    Google Scholar 

  23. Cole KS (1979) Mostly membranes. Annu Rev Physiol 41:1–24

    Article  PubMed  CAS  Google Scholar 

  24. Huxley A (1996) Kenneth Stewart Cole: July 10, 1900–April 18, 1984. Biogr Mem Natl Acad Sci 70:25–45

    PubMed  CAS  Google Scholar 

  25. Schwiening CJ (2012) A brief historical perspective: Hodgkin and Huxley. J Physiol 590(Pt 11):2571–2575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cole KS, Moore JW (1960) Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J 1:I

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Curtis HJ, Cole KS (1942) Membrane resting and action potentials from the squid giant axon. J Cell Comp Physiol 19:135–144

    Article  CAS  Google Scholar 

  28. Vandenberg JI, Waxman SG (2012) Hodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strong. J Physiol 590(Pt 11):2569–2570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. De Palma A, Pareti G (2011) Bernstein’s long path to membrane theory: radical change and conservation in nineteenth-century German electrophysiology. J Hist Neurosci 20(4):306–337

    Article  PubMed  Google Scholar 

  30. Grundfest H (1965) Julius Bernstein, Ludimar Hermann and the discovery of the overshoot of the axon spike. Arch Ital Biol 103(3):483–490

    PubMed  CAS  Google Scholar 

  31. Seyfarth E-A (2006) Julius Bernstein (1839–1917): pioneer neurobiologist and biophysicist. Biol Cybern 94(1):2–8

    Article  PubMed  Google Scholar 

  32. From J (2014) The discovery of the nerve impulse. A chapter in the history of physiology. Dan Medicinhist Arbog 42:81–98

    PubMed  Google Scholar 

  33. Finkelstein G (2006) Emil du Bois-Reymond versus Ludimar Hermann. Comptes Rendus Biol 329(5–6):340–347

    Article  Google Scholar 

  34. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116(4):424–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Raju TN (1999) The Nobel chronicles. 1963: Sir Alan Lloyd Hodgkin (1914–98), Sir Andrew Fielding Huxley (b 1917), and Sir John Carew Eccles (1903–97). Lancet 354(9174):263

    Google Scholar 

  36. Brock LG, Coombs JS, Eccles JC (I952) The recording of potentials from motoneurones with an intracellular electrode. J Physiol II7:43I–460

    Google Scholar 

  37. Ranjan R, Khazen G, Gambazzi L, Ramaswamy S, Hill SL, Schürmann F, Markram H (2011) Channelpedia: an integrative and interactive database for ion channels. Front Neuroinform 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Raju TN (1999) The Nobel chronicles. 1971: Earl Wilbur Sutherland, Jr. (1915–74). Lancet 354(9182):961

    Article  PubMed  CAS  Google Scholar 

  40. Cao H, Yu F, Zhao Y, Zhang X, Tai J, Lee J et al (2014) Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Integr Biol (Camb) 6(8):789–795

    Article  CAS  Google Scholar 

  41. Serpe MJ, Zhang X (2007) The principles, development and application of microelectrodes for the in vivo determination of nitric oxide. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. CRC Press/Taylor & Francis, Boca Raton, Florida, USA

    Google Scholar 

  42. Wijdenes P, Ali H, Armstrong R, Zaidi W, Dalton C, Syed NI (2016) A novel bio-mimicking, planar nano-edge microelectrode enables enhanced long-term neural recording. Sci Rep 6:34553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mullins LJ (1959) An analysis of conductance changes in squid axon. J Gen Physiol 42:1013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Furshpan EJ, Potter DD (1957) Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180:342–343

    Article  PubMed  CAS  Google Scholar 

  45. Furshpan EJ, Potter DD (1959) Transmission at the giant motor synapses of the crayfish. J Physiol 145(2):289–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Narahashi T, Moore JW, Scott WR (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47(5):965–974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Narahashi T (2008) Tetrodotoxin—A brief history. Proc Jpn Acad Ser B Phys Biol Sci 84(5):147–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Armstrong CM (1969) Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol 54(5):553–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Armstrong CM, Binstock L (1965) Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J Gen Physiol 48:859–872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Armstrong CM (1971) Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 58:413–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Binstock L, Lecar H (1969) Ammonium ion currents in the squid giant axon. J Gen Physiol 53(3):342–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patchclamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  53. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  PubMed  CAS  Google Scholar 

  54. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch 375:219–228

    Article  PubMed  CAS  Google Scholar 

  55. Hille B (1975) Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J Gen Physiol 66:535–560

    Article  PubMed  CAS  Google Scholar 

  56. Geck P, Heinz E (1986) The Na-K-2Cl cotransport system. J Membr Biol 91(2):97–105

    Article  PubMed  CAS  Google Scholar 

  57. Kostyuk PG (1984) Metabolic control of ionic channels in the neuronal membrane. Neuroscience 13(4):983–989

    Article  PubMed  CAS  Google Scholar 

  58. Beale R, Dutton GR, Currie DN (1980) An ion flux assay of action potential sodium channels in neuron- and glia-enriched cultures of cells dissociated from rat cerebellum. Brain Res 183(1):241–246

    Article  PubMed  CAS  Google Scholar 

  59. Káradóttir R, Attwell D (2006) Combining patch-clamping of cells in brain slices with immunocytochemical labelling to define cell type and developmental stage. Nat Protoc 1(4):1977–1986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368

    Article  PubMed  CAS  Google Scholar 

  61. Aldea M, Jun K, Shin HS, Andrés-Mateos E, Solís-Garrido LM, Montiel C et al (2002) A perforated patch-clamp study of calcium currents and exocytosis in chromaffin cells of wild-type and alpha(1A) knockout mice. J Neurochem 81(5):911–921

    Article  PubMed  CAS  Google Scholar 

  62. Brüggemann A, Farre C, Haarmann C, Haythornthwaite A, Kreir M, Stoelzle S et al (2008) Planar patch clamp: advances in electrophysiology. Methods Mol Biol 491:165–176

    Article  PubMed  Google Scholar 

  63. Gardner P (1990) Patch clamp studies of lymphocyte activation. Annu Rev Immunol 8:231–252

    Article  PubMed  CAS  Google Scholar 

  64. Palmer LG (1986) Patch-clamp technique in renal physiology. Am J Physiol 250(3 Pt 2):F379–F385

    PubMed  CAS  Google Scholar 

  65. Long Y, Li Z (2012) Drug screening and drug safety evaluation by patch clamp technique. In: Kaneez FS (ed) patch clamp technique. InTech, Croatia

    Google Scholar 

  66. Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology. John Wiley & Sons, New York

    Google Scholar 

  67. Vandenberg JI, Kuchel PW (2003) Nobel Prizes for magnetic resonance imaging and channel proteins. Med J Aust 179(11):611–613

    PubMed  Google Scholar 

  68. Rothman PB (2016) Introduction of Peter Agre. J Clin Invest 126(12):4735–4741

    Article  PubMed  PubMed Central  Google Scholar 

  69. Knepper MA, Nielsen S (2004) Peter Agre, 2003 Nobel Prize winner in chemistry. J Am Soc Nephrol 15(4):1093–1095

    Article  PubMed  CAS  Google Scholar 

  70. Benga G (2006) Water channel proteins: from their discovery in 1985 in Cluj-Napoca, Romania, to the 2003 Nobel Prize in Chemistry. Cell Mol Biol (Noisy-le-grand) 52(7):10–9

    Google Scholar 

  71. Benga G (2004) The first water channel protein (later called aquaporin 1) was first discovered in Cluj-Napoca. Romania. Rom J Physiol 41(1–2):3–20

    PubMed  CAS  Google Scholar 

  72. Kuchel PW (2006) The story of the discovery of aquaporins: convergent evolution of ideas--but who got there first? Cell Mol Biol (Noisy-le-grand) 52(7):2–5

    Google Scholar 

  73. Agre P (2009) The 2009 Lindau Nobel Laureate meeting: Peter Agre, Chemistry 2003. J Vis Exp 34: pii: 1565

    Google Scholar 

  74. Cucuianu M (2006) The discovery by Gh. Benga of the first water channel protein in 1985 in Cluj-Napoca, Romania, A few years before P. Agre (2003 Nobel Prize in Chemistry). Rom J Intern Med 44(3):323–334

    PubMed  CAS  Google Scholar 

  75. Benga G, Popescu O, Pop VI, Holmes RP (1986) p-(Chloromercuri)benzenesulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes. Biochemistry 25(7):1535–1538

    Article  PubMed  CAS  Google Scholar 

  76. Benga G, Popescu O, Borza V, Pop VI, Muresan A, Mocsy I et al (1986) Water permeability of human erythrocytes. Identification of membrane proteins involved in water transport. Eur J Cell Biol 41(2):252–262

    PubMed  CAS  Google Scholar 

  77. Hatta S, Sakamoto J, Horio Y (2002) Ion channels and diseases. Med Electron Microsc 35(3):117–126

    Article  PubMed  CAS  Google Scholar 

  78. Enkvetchakul D (2010) Genetic disorders of ion channels. Mo Med 107(4):270–275

    PubMed  PubMed Central  Google Scholar 

  79. Sanguinetti MC, Spector PS (1997) Potassium channelopathies. Neuropharmacology 36(6):755–762

    Article  PubMed  CAS  Google Scholar 

  80. Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232:1065–1076

    PubMed  CAS  Google Scholar 

  81. Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1092

    PubMed  CAS  Google Scholar 

  82. Exton JH, Robison GA, Sutherland EW, Park CR (1971) Studies on the role of adenosine 3′,5′-monophosphate in the hepatic actions of glucagon and catecholamines. J Biol Chem 246(20):6166–6177

    PubMed  CAS  Google Scholar 

  83. Jefferson LS, Exton JH, Butcher RW, Sutherland EW, Park CR (1968) Role of adenosine 3′,5′-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism. J Biol Chem 243(5):1031–1038

    PubMed  CAS  Google Scholar 

  84. Butcher RW, Ho RJ, Meng HC, Sutherland EW (1965) Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of adenosine 3′,5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J Biol Chem 240(11):4515–4523

    PubMed  CAS  Google Scholar 

  85. Sutherland Earl W, Wosilait WD (1956) The relationship of epinephrine and glucagon to liver phosphorylase. I. Liver phosphorylase; preparation and properties. J Biol Chem 218:459–468

    Google Scholar 

  86. Blumenthal SA (2012) Earl Sutherland (1915–1974) and the discovery of cyclic AMP. Perspect Biol Med 55(2):236–249

    Article  PubMed  CAS  Google Scholar 

  87. Kresge N, Simoni RD, Hill RL (2005) Earl W. Sutherland’s discovery of cyclic adenine monophosphate and the second messenger system. J Biol Chem 280:e39

    CAS  Google Scholar 

  88. Raju TN (1999) The Nobel chronicles. 1966: Francis Peyton Rous (1879–1970) and Charles Brenton Huggins (1901–97). Lancet 354(9177):520

    Article  CAS  Google Scholar 

  89. Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147(Suppl 1):S46–S55

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Bourne HR (2016) Alfred Gilman: intrepid, committed scientist. Proc Natl Acad Sci USA 113(13):3414–3416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Birnbaumer L (2007) The discovery of signal transduction by G proteins. A personal account and an overview of the initial findings and contributions that led to our present understanding. Biochim Biophys Acta 1768(4):756–771

    Article  PubMed  CAS  Google Scholar 

  92. Hofmann L, Palczewski K (2015) The G protein-coupled receptor rhodopsin: a historical perspective. Methods Mol Biol 1271:3–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Costanzi S, Siegel J, Tikhonova IG, Jacobson KA (2009) Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Curr Pharm Des 15(35):3994–4002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ovchinnikov YA (1982) Rhodopsin and bacteriorhodopsin: structure-function relationship. FEBS Lett 148:179–191

    Article  PubMed  CAS  Google Scholar 

  95. Ovchinnikov YA, Abdulaev NG, Feigina MY, Artamonov ID, Zolotarev AS, Kostina MB et al (1982) The complete amino acid sequence of visual rhodopsin. Bioorg Khim 8:1011–1014

    CAS  Google Scholar 

  96. Schertler GFX, Hargrave PA (1995) Projection structure of frog rhodopsin in two crystal forms. PNAS 192:11578–11582

    Article  Google Scholar 

  97. Unger VM, Hargrave PA, Baldwin JM, Schertler GFX (1997) Arrangement of rhodopsin transmembrane alpha-helices. Nature 389:203–206

    Article  PubMed  CAS  Google Scholar 

  98. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745

    Article  PubMed  CAS  Google Scholar 

  99. Clark RB (2013) Profile of Brian K. Kobilka and Robert J. Lefkowitz, 2012 Nobel Laureates in chemistry. Proc Natl Acad Sci USA 110(14):5274–5275

    Article  CAS  Google Scholar 

  100. Kobilka B, Jamal Azouz H (2014) Q&A: Brian Kobilka. Stuck on structure. Nature 514(7522):S12–S13

    Article  PubMed  CAS  Google Scholar 

  101. Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25(8):413–422

    Article  PubMed  CAS  Google Scholar 

  102. Bourne HR (2006) G-proteins and GPCrs: from the beginning. Ernst Schering Found Symp Proc 2:1–21

    Google Scholar 

  103. Schlessinger J (2014) Kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol 6(3). pii: a008912

    Google Scholar 

  104. Becsei-Kilborn E (2010) Scientific discovery and scientific reputation: the reception of Peyton Rous’ discovery of the chicken sarcoma virus. J Hist Biol 43(1):111–157

    Article  PubMed  Google Scholar 

  105. Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA 75:2021–2024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Eckhart W, Hutchinson MA, Hunter T (1979) An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18:925–933

    Article  PubMed  CAS  Google Scholar 

  107. Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77:1311–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Hunter T (2015) Discovering the first tyrosine kinase. Proc Natl Acad Sci USA 112(26):7877–7882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173

    Article  PubMed  CAS  Google Scholar 

  110. Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM (1978) Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15:561–572

    Article  PubMed  CAS  Google Scholar 

  111. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. J Biol Chem 237:1555–1562

    PubMed  CAS  Google Scholar 

  112. Cohen S, Carpenter G, King L Jr (1980) Epidermal growth factor-receptor-protein kinase interactions: co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem 255:4834–4842

    PubMed  CAS  Google Scholar 

  113. Cohen S (2008) Origins of growth factors: NGF and EGF. J Biol Chem 283(49):33793–33797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Galligan JJ (2002) Ligand-gated ion channels in the enteric nervous system. Neurogastroenterol Motil 14(6):611–623

    Article  PubMed  CAS  Google Scholar 

  115. Julius D, Nathans J (2012) Signaling by sensory receptors. Cold Spring Harb Perspect Biol 4(1):a005991

    Article  PubMed  PubMed Central  Google Scholar 

  116. Garcia-Villalba P, Jimenez-Lara AM, Aranda A (1996) Vitamin D interferes with transactivation of the growth hormone gene by thyroid hormone and retinoic acid. Mol Cell Biol 16(1):318–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Weigel NL (1996) Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319(Pt 3):657–667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Lazar MA, Chin WW (1990) Nuclear thyroid hormone receptors. J Clin Invest 86(6):1777–1782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kumar R, Thompson EB (1999) The structure of the nuclear hormone receptors. Steroids 64(5):310–319

    Article  PubMed  CAS  Google Scholar 

  120. Castillo AI, Sánchez-Martínez R, Moreno JL, Martínez-Iglesias OA, Palacios D, Aranda A (2004) A permissive retinoid X receptor/thyroid hormone receptor heterodimer allows stimulation of prolactin gene transcription by thyroid hormone and 9-cis-retinoic acid. Mol Cell Biol 24(2):502–513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Weigel NL, Zhang Y (1998) Ligand-independent activation of steroid hormone receptors. J Mol Med (Berl) 76(7):469–479

    Article  CAS  Google Scholar 

  122. García-Gómez E, González-Pedrajo B, Camacho-Arroyo I (2013) Role of sex steroid hormones in bacterial-host interactions. Biomed Res Int 2013:928290

    Article  PubMed  CAS  Google Scholar 

  123. Chen TS, Doong ML, Chang FY, Lee SD, Wang PS (1995) Effects of sex steroid hormones on gastric emptying and gastrointestinal transit in rats. Am J Physiol 268(1 Pt 1):G171–G176

    PubMed  CAS  Google Scholar 

  124. Black HE (1988) The effects of steroids upon the gastrointestinal tract. Toxicol Pathol 16(2):213–222

    Article  PubMed  CAS  Google Scholar 

  125. Küntzer J, Backes C, Blum T, Gerasch A, Kaufmann M, Kohlbacher O, Lenhof HP (2007) BNDB—the Biochemical Network Database. BMC Bioinformatics 8:367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Hinard V, Britan A, Rougier JS, Bairoch A, Abriel H, Gaudet P (2016) ICEPO: the ion channel electrophysiology ontology. Database (Oxford) 2016: baw017

    Google Scholar 

  127. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Mpamhanga CP, Sharman JL, Harmar AJ (2012) How to use the IUPHAR receptor database to navigate pharmacological data. Methods Mol Biol 897:15–29

    Article  PubMed  CAS  Google Scholar 

  129. Gao J, Cui W, Sheng Y, Ruan J, Kurgan L (2016) PSIONplus: accurate sequence-based predictor of ion channels and their types. PLoS ONE 11(4):e0152964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Gallin WJ, Boutet PA (2011) VKCDB: voltage-gated K+ channel database updated and upgraded. Nucleic Acids Res 39:D362–D366

    Article  PubMed  CAS  Google Scholar 

  131. Donizelli M, Djite MA, Le Novère N (2006) LGICdb: a manually curated sequence database after the genomes. Nucleic Acids Res 34:D267–D269

    Article  PubMed  CAS  Google Scholar 

  132. Michel K, Michaelis M, Mazzuoli G, Mueller K, Vanden Berghe P, Schemann M (2011) Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge. J Physiol 589(Pt 24):5941–5947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Vignali S, Peter N, Ceyhan G, Demir IE, Zeller F, Senseman D et al (2010) Recordings from human myenteric neurons using voltage-sensitive dyes. J Neurosci Methods 192(2):240–248

    Article  PubMed  Google Scholar 

  134. Dascal N (2001) Ion-channel regulation by G proteins. Trends Endocrinol Metab 12(9):391–398

    Article  PubMed  CAS  Google Scholar 

  135. George AL Jr (2005) Inherited disorders of voltage-gated sodium channels. J Clin Invest 115(8):1990–1999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ren D (2011) Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 72(6):899–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Swayne LA, Mezghrani A, Varrault A, Chemin J, Bertrand G, Dalle S et al (2009) The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic β-cell line. EMBO Rep 10:873–880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Galligan JJ (2009) Cannabinoid signalling in the enteric nervous system. Neurogastroenterol Motil 21(9):899–902

    Article  PubMed  CAS  Google Scholar 

  139. Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10:344–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Cooper EC, Jan LY (1999) Ion channel genes and human neurological disease: recent progress, prospects, and challenges. Proc Natl Acad Sci USA 96(9):4759–4766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120

    Article  PubMed  CAS  Google Scholar 

  142. McGehee DS, Role LW (1996) Presynaptic ionotropic receptors. Curr Opin Neurobiol 6(3):342–349

    Article  PubMed  CAS  Google Scholar 

  143. Draguhn A, Axmacher N, Kolbaev S (2008) Presynaptic ionotropic GABA receptors. Results Probl Cell Differ 44:69–85

    Article  PubMed  CAS  Google Scholar 

  144. Bardoni R, Takazawa T, Tong CK, Choudhury P, Scherrer G, Macdermott AB (2013) Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann NY Acad Sci 1279:90–96

    Article  PubMed  CAS  Google Scholar 

  145. Forostyak O, Butenko O, Anderova M, Forostyak S, Sykova E, Verkhratsky A, Dayanithi G (2016) Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res 16(3):622–634

    Article  PubMed  CAS  Google Scholar 

  146. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  PubMed  CAS  Google Scholar 

  147. MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22:443–485

    Article  PubMed  CAS  Google Scholar 

  148. Bowie D (2008) Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord: Drug Targets 7(2):129–143

    Article  CAS  Google Scholar 

  149. Nys M, Wijckmans E, Farinha A, Yoluk Ö, Andersson M, Brams M et al (2016) Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Proc Natl Acad Sci USA 113(43):E6696–E6703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Lynagh T, Lynch JW (2012) Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Front Mol Neurosci 5:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Kozuska JL, Paulsen IM (2012) The Cys-loop pentameric ligand-gated ion channel receptors: 50 years on. Can J Physiol Pharmacol 90(6):771–782

    Article  PubMed  CAS  Google Scholar 

  152. Thompson AJ, Lester HA, Lummis SC (2010) The structural basis of function in Cys-loop receptors. Q Rev Biophys 43(4):449–499

    Article  PubMed  CAS  Google Scholar 

  153. Connolly CN, Wafford KA (2004) The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans 32(Pt3):529–534

    Article  PubMed  CAS  Google Scholar 

  154. Kaneko S, Akaike A, Satoh M (1999) Receptor-mediated modulation of voltage-dependent Ca2+ channels via heterotrimeric G-proteins in neurons. Jpn J Pharmacol 81(4):324–331

    Article  PubMed  CAS  Google Scholar 

  155. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380(6571):258–262

    Article  PubMed  CAS  Google Scholar 

  156. Karim F, Bhave G, Gereau RW 4th (2001) Metabotropic glutamate receptors on peripheral sensory neuron terminals as targets for the development of novel analgesics. Mol Psychiatry 6(6):615–617

    Article  PubMed  CAS  Google Scholar 

  157. Lin W, Kinnamon SC (1999) Physiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. J Neurophysiol 82(5):2061–2069

    Article  PubMed  CAS  Google Scholar 

  158. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Ledoux J, Werner ME, Brayden JE, Nelson MT (2006) Calcium-activated potassium channels and the regulation of vascular tone. Physiology 21(1):69–78

    Article  PubMed  CAS  Google Scholar 

  160. Baker EH (2000) Ion channels and the control of blood pressure. Br J Clin Pharmacol 49(3):185–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Lane BR, Strassmaier T, Brady JD, Karpen JW (2006) The pharmacology of cyclic nucleotide-gated channels: emerging from the darkness. Curr Pharm Des 12(28):3597–3613

    Article  Google Scholar 

  162. Wickman KD, Clapham DE (1995) G-protein regulation of ion channels. Curr Opin Neurobiol 5(3):278–285

    Article  PubMed  CAS  Google Scholar 

  163. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1):291–366

    Article  PubMed  CAS  Google Scholar 

  164. de la Cruz L, Puente EI, Reyes-Vaca A, Arenas I, Garduño J, Bravo-Martínez J, Garcia DE (2016) PIP2 in pancreatic β-cells regulates voltage-gated calcium channels by a voltage-independent pathway. Am J Physiol Cell Physiol 311(4):C630–C640

    Article  PubMed  Google Scholar 

  165. Suh B-C, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: How and why? Annu Rev Biophys 37:175–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Rodríguez-Menchaca AA, Adney SK, Zhou L, Logothetis DE (2012) Dual regulation of voltage-sensitive ion channels by PIP2. Front Pharmacol 3:170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Pedersen PL (2005) Transport ATPases: structure, motors, mechanism and medicine: a brief overview. J Bioenerg Biomembr 37(6):349–357

    Article  PubMed  CAS  Google Scholar 

  168. Pedersen PL (2007) Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 39(5–6):349–355

    Article  PubMed  CAS  Google Scholar 

  169. Lopina OD (2000) Na+/K+ -ATPase: structure, mechanism, and regulation. Membr Cell Biol 13(6):721–744

    PubMed  CAS  Google Scholar 

  170. Alexander SPH, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E et al (2015) The concise guide to pharmacology 2015/16: transporters. Br J Pharmacol 172:6110–6202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Rappas M, Niwa H, Zhang X (2004) Mechanisms of ATPases—a multi-disciplinary approach. Curr Protein Pep Sci 5(2):89–105

    Article  CAS  Google Scholar 

  172. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46(1):84–101

    Article  PubMed  CAS  Google Scholar 

  173. Futai M, Sun-Wada GH, Wada Y (2004) Proton pumping ATPases and diverse inside-acidic compartments. Yakugaku Zasshi 124(5):243–260

    Article  PubMed  CAS  Google Scholar 

  174. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82(3):769–824

    Article  PubMed  CAS  Google Scholar 

  175. Jackson MB (1995) Presynaptic excitability. Int Rev Neurobiol 38:201–251

    Article  PubMed  CAS  Google Scholar 

  176. Kim J-B (2014) Channelopathies. Korean. J Pediatr 57(1):1–18

    Article  Google Scholar 

  177. Lehmann-Horn F, Jurkat-Rott K (eds) (2000) Channelopathies. Elsevier, New York

    Google Scholar 

  178. Wilders R (2015) A note on the prevalence of cardiac ion channelopathies in the sudden infant death syndrome. Europace 17(11):1739

    PubMed  Google Scholar 

  179. Abriel H, Zaklyazminskaya EV (2013) Cardiac channelopathies: genetic and molecular mechanisms. Gene 517(1):1–11

    Article  PubMed  CAS  Google Scholar 

  180. Horga A, Raja Rayan DL, Matthews E, Sud R, Fialho D, Durran SC et al (2013) Prevalence study of genetically defined skeletal muscle channelopathies in England. Neurology 80(16):1472–1475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Davies NP, Hanna MG (1999) Neurological channelopathies: diagnosis and therapy in the new millennium. Ann Med 31(6):406–420

    Article  PubMed  CAS  Google Scholar 

  182. Rolim AL, Lindsey SC, Kunii IS, Fujikawa AM, Soares FA, Chiamolera MI et al (2010) Ion channelopathies in endocrinology: recent genetic findings and pathophysiological insights. Arq Bras Endocrinol Metabol 54(8):673–681

    Article  PubMed  Google Scholar 

  183. Tester DJ, Ackerman MJ (2011) Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 123(9):1021–1037

    Article  PubMed  PubMed Central  Google Scholar 

  184. Lehnart SE, Ackerman MJ, Benson DW Jr, Brugada R, Clancy CE, Donahue JK et al (2007) Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 116(20):2325–2345

    Article  PubMed  CAS  Google Scholar 

  185. Ptáĉek LJ, Tawil R, Griggs RC, Meola G, McManis P, Barohn RJ et al (1994) Sodium channel mutations in acetazolamide-responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis. Neurology 44(8):1500–1503

    Article  PubMed  Google Scholar 

  186. Ptácek LJ, George AL Jr, Griggs RC, Tawil R, Kallen RG, Barchi RL et al (1991) Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67:1021–1027

    Article  PubMed  Google Scholar 

  187. Ptacek LJ, Trimmer JS, Agnew WS, Roberts JW, Petajan JH, Leppert M (1991) Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium channel gene locus. Am J Hum Genet 49:851–854

    PubMed  PubMed Central  CAS  Google Scholar 

  188. Pi Y, Goldenthal MJ, Marín-García J (2007) Mitochondrial channelopathies in aging. J Mol Med (Berl) 85(9):937–951

    Article  CAS  Google Scholar 

  189. Camerino DC, Desaphy JF, Tricarico D, Pierno S, Liantonio A (2008) Therapeutic approaches to ion channel diseases. Adv Genet 64:81–145

    PubMed  CAS  Google Scholar 

  190. Zhou P, Wang J (2010) Genetic testing for channelopathies, more than ten years progress and remaining challenges. J Cardiovasc Dis Res 1(2):47–49

    Article  PubMed  PubMed Central  Google Scholar 

  191. Schwartz PJ, Crotti L, Insolia R (2012) Long QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol 5(4):868–877

    Article  PubMed  PubMed Central  Google Scholar 

  192. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D et al (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354(6354):526–528

    Article  PubMed  CAS  Google Scholar 

  193. Hübner CA, Jentsch TJ (2002) Ion channel diseases. Hum Mol Genet 11(20):2435–2445

    Article  PubMed  Google Scholar 

  194. Ackerman MJ, Marcou CA, Tester DJ (2013) Personalized medicine: genetic diagnosis for inherited cardiomyopathies/channelopathies. Rev Esp Cardiol (Engl Ed) 66(4):298–307

    Article  Google Scholar 

  195. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies. Europace 13(8):1077–1109

    Article  PubMed  Google Scholar 

  196. Cleland JC, Griggs RC (2008) Treatment of neuromuscular channelopathies: current concepts and future prospects. Neurother: J Amer Soc Exp NeuroTher 5:607–612

    Article  PubMed  PubMed Central  Google Scholar 

  197. Cleland JC, Griggs RC (2008) Treatment of neuromuscular channelopathies: current concepts and future prospects. Neurotherapeutics 5(4):607–612

    Article  PubMed  PubMed Central  Google Scholar 

  198. Beck RW, Cleary PA, Anderson MM Jr, Keltner JL, Shults WT, Kaufman DI et al (1992) A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med 326(9):581–588

    Article  PubMed  CAS  Google Scholar 

  199. Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A et al (2016) Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery. Front Pharmacol 7:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534

    Article  PubMed  CAS  Google Scholar 

  201. Elefsinioti AL, Bagos PG, Spyropoulos IC, Hamodrakas SJ (2004) A database for G proteins and their interaction with GPCRs. BMC Bioinformatics 5:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  203. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G (2003) GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res 31(1):294–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modelingand mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  PubMed  CAS  Google Scholar 

  205. Rhee SG, Choi KD (1992) Multiple forms of phospholipase C isozymes and their activation mechanisms. Adv Second Messenger Phosphoprotein Res 26:35–61

    PubMed  CAS  Google Scholar 

  206. Page CP, Costello J (2000) Theophylline and new generation phosphodiesterase inhibitors in the treatment of asthma. In: Giembycz MA, O’Connor BJ (eds) Asthma: epidemiology, anti-inflammatory therapy and future trends part of the series respiratory pharmacology and pharmacotherapy. Birkhäuser, Basel

    Google Scholar 

  207. Li X, Mumby SM, Greenwood A, Jope RS (1995) Pertussis toxin-sensitive G protein alpha-subunits: production of monoclonal antibodies and detection of differential increases on differentiation of PC12 and LA-N-5 cells. J Neurochem 64(3):1107–1117

    Article  PubMed  CAS  Google Scholar 

  208. Gunther EC, von Bartheld CS, Goodman LJ, Johnson JE, Bothwell M (2000) The G-protein inhibitor, pertussis toxin, inhibits the secretion of brain-derived neurotrophic factor. Neuroscience 100(3):569–579

    Article  PubMed  CAS  Google Scholar 

  209. Mangmool S, Kurose H (2011) Gi/o protein-dependent and -independent actions of Pertussis Toxin (PTX). Toxins (Basel) 3(7):884–899

    Article  CAS  Google Scholar 

  210. Akram F, Nasiruddin M, Ahmad Z, Khan RA (2012) Doxofylline and theophylline: a comparative clinical study. J Clin Diagn Res 6(10):1681–1684

    PubMed  PubMed Central  CAS  Google Scholar 

  211. Feneck R (2007) Phosphodiesterase inhibitors and the cardiovascular system. Contin Educ Anaesth Crit Care Pain 7(6):203–207

    Article  Google Scholar 

  212. Banner KH, Page CP (1995) Theophylline and selective phosphodiesterase inhibitors as anti-inflammatory drugs in the treatment of bronchial asthma. Eur Respir J 8:996–1000

    PubMed  CAS  Google Scholar 

  213. Institute of Medicine (US) (2001) Committee on military nutrition research. Caffeine for the sustainment of mental task performance: formulations for military operations. National Academies Press (US), Washington DC, USA

    Google Scholar 

  214. Jacobson KA, Gao Z-G (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Smit HJ (2011) Theobromine and the pharmacology of cocoa. Handb Exp Pharmacol 200:201–234

    Article  CAS  Google Scholar 

  216. Smit HJ, Gaffan EA, Rogers PJ (2004) Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacology 176(3–4):412–419

    Article  PubMed  CAS  Google Scholar 

  217. Shively CA, Tarka SM Jr (1984) Methylxanthine composition and consumption patterns of cocoa and chocolate products. Prog Clin Biol Res 158:149–178

    PubMed  CAS  Google Scholar 

  218. Cheng Z, Garvin D, Paguio A, Stecha P, Wood K, Fan F (2010) Luciferase reporter assay system for deciphering GPCR pathways. Curr Chem Genomics 4:84–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Schou KB, Pedersen LB, Christensen ST (2015) Ins and outs of GPCR signaling in primary cilia. EMBO Rep 16:1099–1113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2005) G-protein signaling: back to the future. Cell Mol Life Sci 62(5):551–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Tuteja N (2009) Signaling through G protein coupled receptors. Plant Signal Behav 4(10):942–947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Alberts B, Johnson A, Lewis J, Raff M, Bray D, Hopkin K et al (2004) Essential cell biology, 2nd edn. Garland Science, New York

    Google Scholar 

  223. Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  PubMed  CAS  Google Scholar 

  224. Meinkoth JL, Alberts AS, Went W, Fantozzi D, Taylor SS, Hagiwara M et al (1993) Signal transduction through the cAMP-dependent protein kinase. Mol Cell Biochem 127–128:179–186

    Article  PubMed  Google Scholar 

  225. Walsh DA, Van Patten SM (1994) Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J 8(15):1227–1236

    Article  PubMed  CAS  Google Scholar 

  226. Park G, Servin JA, Turner GE, Altamirano L, Colot HV, Collopy P et al (2011) Global analysis of serine-threonine protein kinase genes in Neurospora crassa. Eukaryot Cell 10(11):1553–1564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315

    Article  PubMed  CAS  Google Scholar 

  228. Roscioni SS, Elzinga CR, Schmidt M (2008) Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):345–357

    Article  PubMed  CAS  Google Scholar 

  229. Ster J, De Bock F, Guérineau NC, Janossy A, Barrère-Lemaire S, Bos JL et al (2006) Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+ -dependent K+ channels in cerebellar neurons. PNAS 104(7):2519–2524

    Article  CAS  Google Scholar 

  230. Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends in Biochem Sci 31(12):680–686

    Article  CAS  Google Scholar 

  231. Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375

    Article  PubMed  CAS  Google Scholar 

  232. Jensen JK, Dolmer K, Schar C, Gettins PG (2009) Receptor-associated protein (RAP) has two high-affinity binding sites for the low-density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP. Biochem J 421(2):273–282

    Article  PubMed  CAS  Google Scholar 

  233. Okuno Y, Yang J, Taneishi K, Yabuuchi H, Tsujimoto G (2006) GLIDA: GPCR-ligand database for chemical genomic drug discovery. Nucleic Acids Res 34:D673–D677

    Article  PubMed  CAS  Google Scholar 

  234. Worth CL, Kreuchwig A, Kleinau G, Krause G (2011) GPCR-SSFE: a comprehensive database of G-protein-coupled receptor template predictions and homology models. BMC Bioinform 12:185

    Article  CAS  Google Scholar 

  235. Gumbleton M, Kerr WG (2013) Role of inositol phospholipid signaling in natural killer cell biology. Front Immunol 4:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Kerr WG, Colucci F (2011) Inositol phospholipid signaling and the biology of natural killer cells. J Innate Immun 3(3):249–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Asaoka Y, Nakamura S-I, Yoshida K, Nishizuka Y (1992) Protein kinase C, calcium and phospholipid degradation. Trends in Biochem Sci 17(10):414–417

    Article  CAS  Google Scholar 

  238. Cejas PJ, Carlson LM, Zhang J, Padmanabhan S, Kolonias D, Lindner I et al (2005) Protein kinase C βII plays an essential role in dendritic cell differentiation and autoregulates its own expression. J Biol Chem 280:28412–28423

    Article  PubMed  CAS  Google Scholar 

  239. Wu SC, Solaro RJ (2007) Protein kinase C ζ: a novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins. J Biol Chem 282(42):30691–30698

    Article  PubMed  CAS  Google Scholar 

  240. Shin OS, Behera AK, Bronson RT, Hu LT (2007) Role of novel protein kinase C (PKC) isoforms in lyme arthritis. Cell Microbiol 9(8):1987–1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Xiao H, Liu M (2013) Atypical protein kinase C in cell motility. Cell Mol Life Sci 70(17):3057–3066

    Article  PubMed  CAS  Google Scholar 

  242. Watanabe G, Saito Y, Madaule P, Ishizaki T, Fujisawa K, Morii N et al (1996) Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science 271(5249):645–648

    Article  PubMed  CAS  Google Scholar 

  243. Browning DD (2008) Protein kinase G as a therapeutic target for the treatment of metastatic colorectal cancer. Expert Opin Ther Targets 12(3):367–376

    Article  PubMed  CAS  Google Scholar 

  244. Rozengurt E (2011) Protein kinase D signaling: multiple biological functions in health and disease. Physiol (Bethesda) 26(1):23–33

    CAS  Google Scholar 

  245. Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–62

    Article  PubMed  CAS  Google Scholar 

  246. Shigeki H, Hidehiko I, Chie M, Miki H, Hirofumi I, Natsuki M (2008) Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci 99(2):214–220

    Article  CAS  Google Scholar 

  247. Wood JD, Kirchgessner A (2004) Slow excitatory metabotropic signal transmission in the enteric nervous system. Neurogastroenterol Motil 16(Suppl 1):71–80

    Article  PubMed  Google Scholar 

  248. Sternweis PC, Smrcka AV (1992) Regulation of phospholipase C by G proteins. Trends Biochem Sci 17(12):502–506

    Article  PubMed  CAS  Google Scholar 

  249. Exton JH (1996) Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol 36:481–509

    Article  PubMed  CAS  Google Scholar 

  250. Feske S (2010) CRAC channelopathies. Pflügers Archiv Eur J Physiol 460(2):417–435

    Article  CAS  Google Scholar 

  251. Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149:425–438

    Article  CAS  PubMed  Google Scholar 

  252. Wilson CH, Ali ES, Scrimgeour N, Martin AM, Hua J, Tallis GA et al (2015) Steatosis inhibits liver cell store-operated Ca(2)(+) entry and reduces ER Ca(2)(+) through a protein kinase C-dependent mechanism. Biochem J 466:379–390

    Article  PubMed  CAS  Google Scholar 

  253. Vallejo M (2009) PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol 39(2):90–100

    Article  PubMed  CAS  Google Scholar 

  254. Vogalis F, Harvey JR, Neylon CB, Furness JB (2002) Regulation of K+ channels underlying the slow afterhyperpolarization in enteric afterhyperpolarization-generating myenteric neurons: role of calcium and phosphorylation. Clin Exp Pharmacol Physiol 29(10):935–943

    Article  PubMed  CAS  Google Scholar 

  255. Boesmans W, Ameloot K, van den Abbeel V, Tack J, Vanden Berghe P (2009) Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones. Neurogastroenterol Motil 21(9):958–e77

    Article  PubMed  CAS  Google Scholar 

  256. Putney JW (2010) Pharmacology of store-operated calcium channels. Mol Interv 10(4):209–218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Oritani K, Kincade PW (1996) Identification of stromal cell products that interact with pre-B cells. J Cell Biol 134:771–782

    Article  PubMed  CAS  Google Scholar 

  258. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP et al (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357:673–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Cai X (2007) Molecular evolution and functional divergence of the Ca2+ sensor protein in store-operated Ca2+ entry: stromal interaction molecule. PLoS ONE 2:e609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. FreWilliams RT, Senior PV, Van Stekelenburg L, Layton JE, Smith PJ, Dziadek MA (2002) Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim Biophys Acta 1596(1):131–137

    Article  Google Scholar 

  261. Soboloff J, Rothberg BS, Madesh M, Gill DL (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13(9):549–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Beech DJ (2012) Orai1 calcium channels in the vasculature. Pflugers Arch 463(5):635–647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Taylor CW, Konieczny V (2016) IP3 receptors: take four IP3 to open. Sci Signal 9(422):pe1

    Google Scholar 

  264. Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE, Van Petegem F, Yule DI (2016) Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. Sci Signal 9(422):ra35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Chandrasekhar R, Alzayady KJ, Wagner LE 2nd, Yule DI (2016) Unique Regulatory Properties of heterotetrameric inositol 1,4,5-trisphosphate receptors revealed by studying concatenated receptor constructs. J Biol Chem 291(10):4846–4860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G et al (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404(6774):197–201

    Article  PubMed  CAS  Google Scholar 

  267. Berghe VP (2004) Fluorescent molecules as tools to study Ca2+ signaling, mitochondrial dynamics and synaptic function in enteric neurons. Verh K Acad Geneeskd Belg 66(5–6):407–425

    Google Scholar 

  268. Smith JB (1996) Calcium homeostasis in smooth muscle cells. New Horiz 4(1):2–18

    PubMed  CAS  Google Scholar 

  269. Uzhachenko R, Shanker A, Yarbrough WG, Ivanova AV (2015) Mitochondria, calcium, and tumor suppressor Fus1: at the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 6(25):20754–20772

    Article  PubMed  PubMed Central  Google Scholar 

  270. Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta Bioenergetics 1787(11):1374–1382

    Article  CAS  Google Scholar 

  271. Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta Bioenergetics 1797(6–7):907–912

    Article  CAS  Google Scholar 

  272. Pang ZP, Cao P, Xu W, Südhof TC (2010) Calmodulin controls synaptic strength via presynaptic activation of calmodulin kinase II. J Neurosci 30(11):4132–4142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Wilmann M, Gautel M, Mayans O (2000) Activation of calcium/calmodulin regulated kinases. Cell Mol Biol (Noisy-le-grand) 46(5):883–94

    Google Scholar 

  274. Pfisterer SG, Mauthe M, Codogno P, Proikas-Cezanne T (2011) Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 80(6):1066–1075

    Article  PubMed  CAS  Google Scholar 

  275. Nairn AC, Picciotto MR (1994) Calcium/calmodulin-dependent protein kinases. Semin Cancer Biol 5(4):295–303

    PubMed  CAS  Google Scholar 

  276. Mohanta TK, Kumar P, Bae H (2017) Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC Plant Biol 17:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Zhu X, Dunand C, Snedden W, Galaud J-P (2015) CaM and CML emergence in the green lineage. Trends Plant Sci 20(8):483–489

    Article  PubMed  CAS  Google Scholar 

  278. Means AR, Cruzalegui F, Lemagueresse B, Needleman DS, Slaughter GR, Ono T (1991) A novel Ca2+/calmodulin-dependent protein kinase and a male germ cell-specific calmodulin-binding protein are derived from the same gene. Mol Cell Biol 11(8):3960–3971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Tsunoda T, Yamakawa M, Takahashi T (1999) Differential expression of Ca2+ -binding proteins on follicular dendritic cells in non-neoplastic and neoplastic lymphoid follicles. Am J Pathol 155(3):805–814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Armstrong DL (1989) Calcium channel regulation by calcineurin, a Ca2+ -activated phosphatase in mammalian brain. Trends Neurosci 12(3):117–122

    Article  PubMed  CAS  Google Scholar 

  281. Lim HW, De Windt LJ, Steinberg L, Taigen T, Witt SA, Kimball TR, Molkentin JD (2000) Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation 101:2431–2437

    Article  PubMed  CAS  Google Scholar 

  282. Song YH, Cai GY, Xiao YF, Wang YP, Yuan BS, Xia YY et al (2017) Efficacy and safety of calcineurin inhibitor treatment for IgA nephropathy: a meta-analysis. BMC Nephrol 18(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Naesens M, Kuypers DRJ, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. CJASN 4(2):481–508

    PubMed  CAS  Google Scholar 

  284. Qiu TT, Zhang C, Zhao HW, Zhou JW (2017) Calcineurin inhibitors versus cyclophosphamide for idiopathic membranous nephropathy: a systematic review and meta-analysis of 21 clinical trials. Autoimmun Rev 16(2):136–145

    Article  PubMed  CAS  Google Scholar 

  285. Crabtree GR (2001) Calcium, calcineurin, and the control of transcription. J Biol Chem 276:2313–2316

    Article  PubMed  CAS  Google Scholar 

  286. Wang C-LA (2008) Caldesmon and the regulation of cytoskeletal functions. Adv Exp Med Biol 644:250–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Yáñez M, Gil-Longo J, Campos-Toimil M (2012) Calcium binding proteins. Adv Exp Med Biol 740:461–482

    Article  PubMed  CAS  Google Scholar 

  288. Weinman S (1991) Calcium-binding proteins: an overview. J Biol Buccale 19(1):90–98

    PubMed  CAS  Google Scholar 

  289. Heizmann CW (1992) Calcium-binding proteins: basic concepts and clinical implications. Gen Physiol Biophys 11(5):411–425

    PubMed  CAS  Google Scholar 

  290. Ozcan L, de Souza JC, Harari AA, Backs J, Olson EN, Tabas I (2013) Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metab 18(6):803–815

    Article  PubMed  CAS  Google Scholar 

  291. Lu D, Chen J, Hai T (2007) The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem J 401(Pt 2):559–567

    Article  PubMed  CAS  Google Scholar 

  292. Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12(6a):2165–2180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Yang Z (2002) Small GTPases—versatile signaling switches in plants. Plant Cell 14(Suppl):s375–s388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846

    Article  PubMed  CAS  Google Scholar 

  295. Goitre L, Trapani E, Trabalzini L, Retta SF (2014) The Ras superfamily of small GTPases: the unlocked secrets. Methods Mol Biol 1120:1–18

    Article  PubMed  CAS  Google Scholar 

  296. Manser E (2002) Small GTPases take the stage. Dev Cell 3(3):323–328

    Article  PubMed  CAS  Google Scholar 

  297. Ivanova-Nikolova TT, Breitwieser GE (1997) Effector contributions to G beta gamma-mediated signaling as revealed by muscarinic potassium channel gating. J Gen Physiol 109(2):245–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319

    Article  PubMed  CAS  Google Scholar 

  299. Premont RT, Inglese J, Lefkowitz RJ (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 9(2):175–182

    Article  PubMed  CAS  Google Scholar 

  300. Palczewski K (1994) Structure and functions of arrestins. Protein Sci 3(9):1355–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Puca L, Chastagner P, Meas-Yedid V, Israël A, Brou C (2013) Α-arrestin 1 (ARRDC1) and β-arrestins cooperate to mediate Notch degradation in mammals. J Cell Sci 126(Pt 19):4457–4468

    Article  PubMed  CAS  Google Scholar 

  302. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York, USA

    Google Scholar 

  303. Alexander SP, Mathie A, Peters JA (2007) Catalytic receptors. Br J Pharmacol 150 Suppl 1 (S1):S122–S127

    Article  PubMed Central  CAS  Google Scholar 

  304. Gomez-Puerta JA, Mócsai A (2013) Tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Curr Top Med Chem 13(6):760–773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Grassot J, Mouchiroud G, Perrière G (2003) RTKdb: database of receptor tyrosine kinase. Nucleic Acids Res 31(1):353–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Kontzias A, Laurence A, Gadina M, O’Shea JJ (2012) Kinase inhibitors in the treatment of immune-mediated disease. F1000 Med Rep 4:5

    Google Scholar 

  307. Martin J, Anamika K, Srinivasan N (2010) Classification of protein kinases on the basis of both kinase and non-kinase regions. PLoS ONE 5(9):e12460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  308. Alexander SPH, Fabbro D, Kelly E, Marrion N, Peters JA, Benson HE et al (2015) The concise guide to pharmacology 2015/16: catalytic receptors. Br J Pharmacol 172:5979–6023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Tyagi N, Anamika K, Srinivasan N (2010) A framework for classification of prokaryotic protein kinases. PLoS ONE 5(5):e10608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  310. Prisic S, Husson RN (2014) Mycobacterium tuberculosis serine/threonine protein kinases. Microbiol Spectr 2(5):1–26

    Google Scholar 

  311. Magnuson NS, Beck T, Vahidi H, Hahn H, Smola U, Rapp UR (1994) The Raf-1 serine/threonine protein kinase. Semin Cancer Biol 5(4):247–253

    PubMed  CAS  Google Scholar 

  312. Taylor SS, Radzio-Andzelm E, Hunter T (1995) How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor protein-tyrosine kinase. FASEB J 9(13):1255–1266

    Article  PubMed  CAS  Google Scholar 

  313. Feldmann M (2008) Many cytokines are very useful therapeutic targets in disease. J Clin Invest 118(11):3533–3536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Vilček J, Feldmann M (2004) Historical review: cytokines as therapeutics and targets of therapeutics. Trends Pharmacol Sci 25(4):201–209

    Article  PubMed  CAS  Google Scholar 

  315. Massagué J, Weis-Garcia F (1996) Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv 27:41–64

    PubMed  Google Scholar 

  316. ten Dijke P, Franzén P, Yamashita H, Ichijo H, Heldin CH, Miyazono K (1994) Serine/threonine kinase receptors. Prog Growth Factor Res 5(1):55–72

    Article  PubMed  Google Scholar 

  317. Josso N, di Clemente N (1997) Serine/threonine kinase receptors and ligands. Curr Opin Genet Dev 7(3):371–377

    Article  PubMed  CAS  Google Scholar 

  318. Schulz S, Chinkers M, Garbers DL (1989) The guanylate cyclase/receptor family of proteins. FASEB J 3(9):2026–2035

    Article  PubMed  CAS  Google Scholar 

  319. Martin E, Berka V, Tsai AL, Murad F (2005) Soluble guanylyl cyclase: the nitric oxide receptor. Methods Enzymol 396:478–492

    Article  PubMed  CAS  Google Scholar 

  320. Ma X, Sayed N, Beuve A, van den Akker F (2007) NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism. EMBO J 26(2):578–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Murthy KS (2004) Modulation of soluble guanylate cyclase activity by phosphorylation. Neurochem Int 45(6):845–851

    Article  PubMed  CAS  Google Scholar 

  322. Potter LR (2011) Guanylyl cyclase structure, function and regulation. Cell Signal 23(12):1921–1926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  323. Qian X, Prabhakar S, Nandi A, Visweswariah SS, Goy MF (2000) Expression of GC-C, a receptor-guanylate cyclase, and its endogenous ligands uroguanylin and guanylin along the rostrocaudal axis of the intestine. Endocrinology 141(9):3210–3224

    Article  PubMed  CAS  Google Scholar 

  324. Sharma RK, Duda T, Goraczniak R, Sitaramayya A (1997) Membrane guanylate cyclase signal transduction system. Indian J Biochem Biophys 34(1–2):40–49

    Article  PubMed  CAS  Google Scholar 

  325. Garbers DL (1991) Guanylyl cyclase-linked receptors. Pharmacol Ther 50(3):337–345

    Article  PubMed  CAS  Google Scholar 

  326. Garbers DL (1989) Guanylate cyclase, a cell surface receptor. J Biol Chem 264(16):9103–9106

    PubMed  CAS  Google Scholar 

  327. Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338(6210):78–83

    Article  PubMed  CAS  Google Scholar 

  328. Thorpe DS, Garbers DL (1989) The membrane form of guanylate cyclase. Homology with a subunit of the cytoplasmic form of the enzyme. J Biol Chem 264(11):6545–6549

    PubMed  CAS  Google Scholar 

  329. Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott LJ et al (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334(6184):708–712

    Article  PubMed  CAS  Google Scholar 

  330. Chao YC, Chen CC, Lin YC, Breer H, Fleischer J, Yang RB (2015) Receptor guanylyl cyclase-G is a novel thermosensory protein activated by cool temperatures. EMBO J 34(3):294–306

    Article  PubMed  CAS  Google Scholar 

  331. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  332. Robinson SDR, Wu Y-M, Lin S-F (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557

    Article  PubMed  CAS  Google Scholar 

  333. Bublil EM, Yarden Y (2007) The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 19(2):124–134

    Article  PubMed  CAS  Google Scholar 

  334. Ribchester RR, Thomson D, Haddow LJ, Ushkaryov YA (1998) Enhancement of spontaneous transmitter release at neonatal mouse neuromuscular junctions by the glial cell line-derived neurotrophic factor (GDNF). J Physiol 512(3):635–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  335. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS ONE 9(10):e109305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Hollis ER II, Tuszynski MH (2011) Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics 8(4):694–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signaling. Nature 411:355–365

    Article  PubMed  CAS  Google Scholar 

  338. Seidel HM, Lamb P, Rosen J (2000) Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene 19(21):2645–2656

    Article  PubMed  CAS  Google Scholar 

  339. Sansone P, Bromberg J (2012) Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol 30(9):1005–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  340. Vainchenker W, Constantinescu SN (2013) JAK/STAT signaling in hematological malignancies. Oncogene 32(21):2601–2613

    Article  PubMed  CAS  Google Scholar 

  341. Jatiani SS, Baker SJ, Silverman LR, Reddy EP (2010) JAK/STAT pathways in cytokine signaling and myeloproliferative disorders. Genes Cancer 1(10):979–993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  342. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  343. Gammeltoft S, Van Obberghen E (1986) Protein kinase activity of the insulin receptor. Biochem J 235(1):1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  344. Zick Y (1989) The insulin receptor: structure and function. Crit Rev Biochem Mol Biol 24(3):217–269

    Article  PubMed  CAS  Google Scholar 

  345. Rosen OM (1987) After insulin binds. Science 237(4821):1452–1458

    Article  PubMed  CAS  Google Scholar 

  346. Kasuga M, Izumi T, Tobe K, Shiba T, Momomura K, Tashiro-Hashimoto Y, Kadowaki T (1990) Substrates for insulin-receptor kinase. Diabet Care 13(3):317–326

    Article  CAS  Google Scholar 

  347. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945

    Article  PubMed  CAS  Google Scholar 

  348. Morris DL, Cho KW, Zhou Y, Rui L (2009) Enhances insulin sensitivity by both stimulating the insulin receptor and inhibiting tyrosine dephosphorylation of insulin receptor substrate proteins. Diabetes 58(9):2039–2047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  349. Watson RT, Pessin JE (2001) Subcellular compartmentalization and trafficking of theinsulin-responsive glucose transporter, GLUT4. Exp Cell Res 271:75–83

    Article  PubMed  CAS  Google Scholar 

  350. Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5(4):237–252

    Article  PubMed  CAS  Google Scholar 

  351. Takai H, Wang RC, Takai KK, Yang H, de Lange T (2007) Tel2 regulates the stability of PI3 K-related protein kinases. Cell 131:1248–1259

    Article  PubMed  CAS  Google Scholar 

  352. Krebs M, Brunmair B, Brehm A, Artwohl M, Szendroedi J, Nowotny P et al (2007) The mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes 56(6):1600–1607

    Article  PubMed  CAS  Google Scholar 

  353. Smith GC, Ong WK, Costa JL, Watson M, Cornish J, Grey A et al (2013) Extended treatment with selective phosphatidylinositol 3-kinase and mTOR inhibitors has effects on metabolism, growth, behaviour and bone strength. FEBS J 280(21):5337–5349

    Article  PubMed  CAS  Google Scholar 

  354. Yecies JL, Manning BD (2011) Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res 71(8):2815–2820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Huang J, Manning BD (2009) A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37(Pt 1):217–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  356. Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, Vesely E et al (2008) A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Physiol Cell Physiol 295(3):C836–C843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Feng Z, Levine AJ (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20(7):427–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  358. Choura M, Rebaï A (2010) Application of computational approaches to study signalling networks of nuclear and tyrosine kinase receptors. Biol Direct 5:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Gray KA, Seal RL, Tweedie S, Wright MW, Bruford EA (2016) A review of the new HGNC gene family resource. Hum Genomics 10:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  360. Yates B, Braschi B, Gray KA, Seal RL, Tweedie S, Bruford EA (2017) Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res 45(D1):D619–D625

    Article  PubMed  CAS  Google Scholar 

  361. Brown JE, Krodel M, Pazos M, Lai C, Prieto AL (2012) Cross-phosphorylation, signaling and proliferative functions of the Tyro3 and Axl receptors in Rat2 cells. PLoS ONE 7(5):e36800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  362. Levitzki A, Gazit A, Osherov N, Posner I, Gilon C (1991) Inhibition of protein-tyrosine kinases by tyrphostins. Methods Enzymol 201:347–361

    Article  PubMed  CAS  Google Scholar 

  363. Gillespie J, Dye JF, Schachter M, Guillou PJ (1993) Inhibition of pancreatic cancer cell growth in vitro by the tyrphostin group of tyrosine kinase inhibitors. Br J Cancer 68(6):1122–1126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  364. Zlotnik Y, Patya M, Vanichkin A, Novogrodsky A (2005) Tyrphostins reduce chemotherapy-induced intestinal injury in mice: assessment by a biochemical assay. Br J Cancer 92(2):294–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  365. Natoli C, Perrucci B, Perrotti F, Falchi L, Iacobelli S (2010) Consorzio Interuniversitario Nazionale per Bio-Oncologia (CINBO), tyrosine kinase inhibitors. Curr Cancer Drug Targets 10(5):462–483

    Article  PubMed  CAS  Google Scholar 

  366. Wu P, Nielsen TE, Clausen MH (2016) Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today 21(1):5–10

    Article  PubMed  CAS  Google Scholar 

  367. Hartmann JT, Haap M, Kopp HG, Lipp HP (2009) Tyrosine kinase inhibitors—a review on pharmacology, metabolism and side effects. Curr Drug Metab 10(5):470–481

    Article  PubMed  CAS  Google Scholar 

  368. Kaplan FS, Groppe J, Pignolo RJ, Shore EM (2007) Morphogen receptor genes and metamorphogenes: skeleton keys to metamorphosis. Ann NY Acad Sci 1116:113–133

    Article  PubMed  CAS  Google Scholar 

  369. Christian JL (2012) Morphogen gradients in development: from form to function. Wiley Interdiscip Rev Dev Biol 1(1):3–15

    Article  PubMed  CAS  Google Scholar 

  370. Artells R, Navarro A, Diaz T, Monzó M (2011) Ultrastructural and immunohistochemical analysis of intestinal myofibroblasts during the early organogenesis of the human small intestine. Anat Record 294(3):462–471

    Article  Google Scholar 

  371. Lévy E, Delvin E, Ménard D, Beaulieu J-F (2009) Functional development of human fetal gastrointestinal tract. Human Embryogenesis: Methods Mol Biol 550:205–224

    Article  CAS  Google Scholar 

  372. Drozdowski LA, Clandinin T, Thomson ABR (2010) Ontogeny, growth and development of the small intestine: understanding pediatric gastroenterology. World J Gastroenterol 16(7):787–799

    PubMed  PubMed Central  CAS  Google Scholar 

  373. Tabata T, Takei Y (2004) Morphogens, their identification and regulation Development 131:703–712

    Article  PubMed  CAS  Google Scholar 

  374. Janas T, Janas MM, Sapoń K, Janas T (2015) Mechanisms of RNA loading into exosomes. FEBS Lett 589(13):1391–1398

    Article  PubMed  CAS  Google Scholar 

  375. Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18(5):199–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  376. Vincent J-P, Magee T (2002) Argosomes: membrane fragments on the run. Trends Cell Biol 12(2):57–60

    Article  PubMed  CAS  Google Scholar 

  377. Ramírez-Weber F-A, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97(5):599–607

    Article  PubMed  Google Scholar 

  378. Zhang L, Wrana JL (2014) The emerging role of exosomes in Wnt secretion and transport. Curr Opin Genet Dev 27:14–19

    Article  PubMed  CAS  Google Scholar 

  379. Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I (2013) Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat Cell Biol 15(11):1269–1281

    Article  PubMed  CAS  Google Scholar 

  380. Gradilla A-C, González E, Seijo I, Andrés G, Bischoff M, González-Mendez L et al (2014) Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 5:5649

    Article  PubMed  CAS  Google Scholar 

  381. Lim YS, Tang BL (2012) Intercellular organelle trafficking by membranous nanotube connections: a possible new role in cellular rejuvenation? Cell Commun Adhes 19(3–4):39–44

    Article  PubMed  CAS  Google Scholar 

  382. Shilo B-Z (2001) The organizer and beyond. Cell 106(1):17–22

    Article  PubMed  CAS  Google Scholar 

  383. Greco V, Hannus M, Eaton S (2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106(5):633–645

    Article  PubMed  CAS  Google Scholar 

  384. Austefjord MW, Gerdes H-H, Wang X (2014) Tunneling nanotubes: diversity in morphology and structure. Commun Integr Biol 7:e27934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  385. Gurke S, Barroso JFV, Gerdes H-H (2008) The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 129(5):539–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  386. Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7):a004952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  387. Rodgers KD, San Antonio JD, Jacenko O (2008) Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn 237(10):2622–2642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  388. Fisher MC, Li Y, Seghatoleslami MR, Dealy CN, Kosher RA (2006) Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol 25(1):27–39

    Article  PubMed  CAS  Google Scholar 

  389. Li JP, Spillmann D (2012) Heparan sulfate proteoglycans as multifunctional cell regulators: cell surface receptors. Methods Mol Biol 836:239–255

    Article  PubMed  CAS  Google Scholar 

  390. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109

    Article  PubMed  CAS  Google Scholar 

  391. Roel N, Harold V (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 31(12):2670–2684

    Article  CAS  Google Scholar 

  392. Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H (1984) Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307(5947):131–136

    Article  PubMed  CAS  Google Scholar 

  393. Klaus A, Birchmeier W (2008) Wnt signaling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398

    Article  PubMed  CAS  Google Scholar 

  394. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801

    Article  PubMed  Google Scholar 

  395. Nakamura T, Hamada F, Ishidate T, Anai K, Kawahara K, Toyoshima K, Akiyama T (1998) Axin, an inhibitor of the Wnt signalling pathway, interacts with β-catenin, GSK-3β and APC and reduces the β-catenin level. Genes Cells 3(6):395–403

    Article  PubMed  CAS  Google Scholar 

  396. Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH et al (2013) Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskel Dis 5(1):13–31

    Article  CAS  Google Scholar 

  397. Yao H, Ashihara E, Maekawa T (2011) Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets 15(7):873–887

    Article  PubMed  CAS  Google Scholar 

  398. Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16(7):279–283

    Article  PubMed  Google Scholar 

  399. Bryja V, Andersson ER, Schambony A, Esner M, Bryjová L, Biris KK et al (2009) The extracellular domain of Lrp5/6 inhibits noncanonical wnt signaling in vivo. Mol Biol Cell 20(3):924–936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  400. Ren D, Chen J, Li Z, Yan H, Yin Y, Wo D et al (2014) LRP5/6 directly bind to Frizzled and prevent Frizzled-regulated tumour metastasis. Nat Commun 6:6906

    Article  CAS  Google Scholar 

  401. Malbon CC (2004) Frizzleds: new members of the superfamily of G-protein-coupled receptors. Front Biosci 9:1048–1058

    Article  PubMed  CAS  Google Scholar 

  402. Huang HC, Klein PS (2004) The Frizzled family: receptors for multiple signal transduction pathways. Genome Biol 5(7):234

    Article  PubMed  PubMed Central  Google Scholar 

  403. Sear RP (2007) Dishevelled: a protein that functions in living cells by phase separating. Soft Matter 3:680–684

    Article  CAS  PubMed  Google Scholar 

  404. Pulvirenti T, Van Der Heijden M, Droms LA, Huse JT, Tabar V, Hall A (2011) Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. Cancer Res 71(23):7280–7290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  405. Wallingford JB, Habas R (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132:4421–4436

    Article  PubMed  CAS  Google Scholar 

  406. Kikuchi A (1999) Modulation of Wnt signaling by Axin and Axil. Cytokine Growth Factor Rev 10(3–4):255–265

    Article  PubMed  CAS  Google Scholar 

  407. Li KK-W, Lau K-M, Ng H-K (2013) Signaling pathway and molecular subgroups of medulloblastoma. Int J Clin Exp Pathol 6(7):1211–1222

    PubMed  PubMed Central  Google Scholar 

  408. Farr GH III, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D (2000) Interaction among Gsk-3, Gbp, Axin, and APC in Xenopus axis specification. J Cell Biol 148(4):691–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  409. Hedgepeth CM, Deardorff MA, Rankin K, Klein PS (1999) Regulation of glycogen synthase kinase 3β and downstream wnt signaling by Axin. Mol Cell Biol 19(10):7147–7157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  410. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. The EMBO J 17:1371–1384

    Article  PubMed  CAS  Google Scholar 

  411. Yamamoto H, Kishida S, Uochi T, Ikeda S, Koyama S, Asashima M, Kikuchi A (1998) Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol 18(5):2867–2875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  412. Takemaru K-I, Yamaguchi S, Lee YS, Zhang Y, Carthew RW, Moon RT (2003) Chibby, a nuclear β-catenin-associated antagonist of the Wnt/Wingless pathway. Nature 422:905–909

    Article  PubMed  CAS  Google Scholar 

  413. Lin GL, Hankenson KD (2012) Integration of BMP, Wnt, and Notch signaling pathways in osteoblast differentiation. J Cell Biochem 112(12):3491–3501

    Article  CAS  Google Scholar 

  414. Djabrayan NJV, Dudley NR, Sommermann EM, Rothman JH (2012) Essential role for Notch signaling in restricting developmental plasticity. Genes Dev 26(21):2386–2391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  415. Huang T, Zhou Y, Cheng ASL, Yu J, To KF, Kang W (2016) Notch receptors in gastric and other gastrointestinal cancers: oncogenes or tumor suppressors? Mol Cancer 15:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  416. Demitrack ES, Samuelson LC (2016) Notch regulation of gastrointestinal stem cells. J Physiol 594(17):4791–4803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  417. Kim TH, Kim BM, Mao J, Rowan S, Shivdasani RA (2011) Endodermal Hedgehog signals modulate Notch pathway activity in the developing digestive tract mesenchyme. Development 138(15):3225–3233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  418. Liu JA, Ngan ES-W (2014) Hedgehog and Notch signaling in enteric nervous system development. Neurosignals 22:1–13

    Article  PubMed  CAS  Google Scholar 

  419. Katoh M, Katoh M (2007) Notch signaling in gastrointestinal tract (review). Int J Oncol 30(1):247–251

    PubMed  CAS  Google Scholar 

  420. Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, Haltiwanger RS, Jafar-Nejad H (2011) Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138(10):1925–1934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  421. Ungerbäck J, Elander N, Grünberg J, Sigvardsson M, Söderkvist P (2011) The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells. PLoS ONE 6(3):e17957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  422. Kangsamaksin T, Murtomaki A, Kofler NM, Cuervo H, Chaudhri RA, Tattersall IW et al (2015) Notch decoys that selectively block Dll/Notch or Jagged/Notch disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 5(2):182–197

    Article  PubMed  CAS  Google Scholar 

  423. Van de Walle I, De Smet G, Gärtner M, De Smedt M, Waegemans E, Vandekerckhove B et al (2011) Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood 117(17):4449–4459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  424. Chillakuri CR, Sheppard D, Lea SM, Handford PA (2012) Notch receptor–ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol 23(4):421–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  425. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30

    Article  PubMed  CAS  Google Scholar 

  426. Tsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S et al (2014) ADAM10 regulates Notch function in intestinal stem cells of mice. Gastroenterology 147(4):822–834.e13

    Article  PubMed  CAS  Google Scholar 

  427. De Santa BP, Van Den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60(7):1322–1332

    Article  CAS  Google Scholar 

  428. D’mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269(22):15451–15459

    PubMed  Google Scholar 

  429. Teufel A, Maass T, Galle PR, Malik N (2009) The longevity assurance homologue of yeast lag1 (Lass) gene family (review). Int J Mol Med 23(2):135–140

    PubMed  CAS  Google Scholar 

  430. Lehman RF, Jimenez W, Dietrich U, Campos-Ortega JA (1983) On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 192:62–74

    Article  Google Scholar 

  431. Smoller D, Friedel C, Schmid A, Bettler D, Lam L, Yedvobnick B (1990) The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev 4:1688–1700

    Article  PubMed  CAS  Google Scholar 

  432. Artavanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signaling. Science 268:225–232

    Article  PubMed  CAS  Google Scholar 

  433. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  434. Yamamoto N, Yamamoto S, Inagaki F, Kawaichi M, Fukamizu A, Kishi N et al (2001) Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J Biol Chem 276(48):45031–45040

    Article  PubMed  CAS  Google Scholar 

  435. Matsuno K, Eastman D, Mitsiades T, Quinn AM, Carcanciu ML, Ordentlich P et al (1998) Human deltex is a conserved regulator of Notch signalling. Nat Gene 19(1):74–78

    Article  CAS  Google Scholar 

  436. Matsuno K, Diederich RJ, Go MJ, Blaumueller CM, Artavanis-Tsakonas S (1995) Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121(8):2633–2644

    PubMed  CAS  Google Scholar 

  437. Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Role of the Ram domain and ankyrin repeats on notch signalingand activity in cells of osteoblastic lineage. J Bone Miner Res 21(8):1317–1326

    Article  PubMed  CAS  Google Scholar 

  438. Panelos J, Massi D (2009) Emerging role of Notch signaling in epidermal differentiation and skin cancer. Cancer Biol Ther 8(21):1986–1993

    Article  PubMed  CAS  Google Scholar 

  439. Andersen P, Uosaki H, Shenje LT, Kwon C (2012) Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol 22(5):257–265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  440. Heretsch P, Tzagkaroulaki L, Giannis A (2010) Modulators of the hedgehog signaling pathway. Bioorg Med Chem 18(18):6613–6624

    Article  PubMed  CAS  Google Scholar 

  441. Zhou J, Wei X, Wei L (2014) Indian Hedgehog, a critical modulator in osteoarthritis, could be a potential therapeutic target for attenuating cartilage degeneration disease. Connect Tissue Res 55(4):257–261

    Article  PubMed  CAS  Google Scholar 

  442. Sam SA, Teel J, Tegge AN, Bharadwaj A, Murali TM (2017) XTalkDB: a database of signaling pathway crosstalk. Nucleic Acids Res 45(D1):D432–D439

    Article  PubMed  CAS  Google Scholar 

  443. Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF, Hynes RO (1986) Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:271–282

    Article  PubMed  CAS  Google Scholar 

  444. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554

    Article  PubMed  CAS  Google Scholar 

  445. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands. J Cell Sci 119(Pt 19):3901–3903

    Article  PubMed  CAS  Google Scholar 

  446. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3(3):a004994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  447. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  PubMed  CAS  Google Scholar 

  448. Akiyama SK (1996) Integrins in cell adhesion and signaling. Hum Cell 9(3):181–186

    PubMed  CAS  Google Scholar 

  449. Wagner G (1994) Cell surface adhesion receptors. Curr Opin Struct Biol 4(6):841–851

    Article  PubMed  CAS  Google Scholar 

  450. Gorfu G, Rivera-Nieves J, Ley K (2009) Role of β7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med 9(7):836–850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  451. Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122:159–163

    Article  PubMed  CAS  Google Scholar 

  452. Lee JW, Juliano RL (2000) α5β1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B–dependent pathway. Mol Biol Cell 11(6):1973–1987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  453. Wang X, Xu H, Gill AF, Pahar B, Kempf D, Rasmussen T et al (2009) Monitoring α4 β7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T-cell loss in SIV infection. Mucosal Immunol 2:518–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  454. Liu Y-X, Yoshino T, Ohara N, Oka T, Jin Z-S, Hayashi K, Akagi T (2001) Loss of expression of α4 β7 integrin and L-selectin is associated with high-grade progression of low-grade MALT lymphoma. Mod Pathol 14(8):798–805

    Article  PubMed  CAS  Google Scholar 

  455. Heino J (2000) The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol 19(4):319–323

    Article  PubMed  CAS  Google Scholar 

  456. Teixidó J, Hemler ME, Greenberger JS, Anklesaria P (1992) Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma. J Clin Invest 90(2):358–367

    Article  PubMed  PubMed Central  Google Scholar 

  457. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  458. Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84(6):923–932

    Article  PubMed  CAS  Google Scholar 

  459. Niessen CM, Leckband D, Yap AS (2011) Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91(2):691–731

    Article  PubMed  CAS  Google Scholar 

  460. Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251(5000):1451–1455

    Article  PubMed  CAS  Google Scholar 

  461. Shimono Y, Rikitake Y, Mandai K, Mori M, Takai Y (2012) Immunoglobulin superfamily receptors and adherens junctions. Subcell Biochem 60:137–170

    Article  PubMed  CAS  Google Scholar 

  462. Geissmann F, Ruskoné-Fourmestraux A, Hermine O, Bourquelot P, Belanger C, Audouin J et al (1998) Homing receptor α4β7 integrin expression predicts digestive tract involvement in mantle cell lymphoma. Am J Pathol 153(6):1701–1705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  463. Baruch-Morgenstern NB, Shik D, Moshkovits I, Itan M, Karo-Atar D, Bouffi C et al (2014) Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development. Nat Immunol 15(1):36–44

    Article  PubMed  CAS  Google Scholar 

  464. Michail S, Mezoff E, Abernathy F (2005) Role of selectins in the intestinal epithelial migration of eosinophils. Pediatr Res 58:644–647

    Article  PubMed  CAS  Google Scholar 

  465. Kawamura YI, Kawashima R, Fukunaga R, Hirai K, Toyama-Sorimachi N, Tokuhara M et al (2005) Introduction of Sda carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res 65(14):6220–6227

    Article  PubMed  CAS  Google Scholar 

  466. Trinchera M, Aronica A, Dall’Olio F (2017) Selectin ligands sialyl-lewis a and sialyl-lewis x in gastrointestinal cancers. Biology 6(16):1–18

    Google Scholar 

  467. Hermand P, Gane P, Callebaut I, Kieffer N, Cartron JP, Bailly P (2004) Integrin receptor specificity for human red cell ICAM-4 ligand. Critical residues for alphaIIbeta3 binding. Eur J Biochem 271(18):3729–3740

    Article  PubMed  CAS  Google Scholar 

  468. Kajita M, McClinic KN, Wade PA (2004) Aberrant expression of the transcription factors Snail and Slug alters the response to genotoxic stress. Mol Cell Biol 24(17):7559–7566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  469. Weng M, Wieschaus E (2016) Myosin-dependent remodeling of adherens junctions protects junctions from Snail-dependent disassembly. J Cell Biol 212(2):219–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  470. Janssen S, Depoortere I (2013) Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrin Metab 24(2):92–100

    Article  CAS  Google Scholar 

  471. Running CA, Craig BA, Mattes RD (2015) Oleogustus: the unique taste of fat. Chem Senses 40(7):507–516

    Article  PubMed  CAS  Google Scholar 

  472. Besnard P, Passilly-Degrace P, Khan NA (2016) Taste of fat: a sixth taste modality? Physiol Rev 96(1):151–176

    Article  PubMed  CAS  Google Scholar 

  473. Dramane G, Akpona S, Simonin AM, Besnard P, Khan NA (2011) Cell signaling mechanisms of gustatory perception of lipids: can the taste cells be the target of anti-obesity agents? Curr Med Chem 18(22):3417–3422

    Article  PubMed  CAS  Google Scholar 

  474. Liu D, Archer N, Duesing K, Hannan G, Keast R (2016) Mechanism of fat taste perception: association with diet and obesity. Prog Lipid Res 63:41–49

    Article  PubMed  CAS  Google Scholar 

  475. Keast RSJ, Costanzo A (2015) Is fat the sixth taste primary? Evidence and implications. Flavour 4:5

    Article  Google Scholar 

  476. Degrace-Passilly P, Besnard P (2012) CD36 and taste of fat. Curr Opin Clin Nutr Metab Care 15(2):107–111

    Article  PubMed  CAS  Google Scholar 

  477. Richter TA, Caicedo A, Roper SD (2003) Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J Physiol 547(Pt 2):475–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  478. Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294

    Article  PubMed  CAS  Google Scholar 

  479. Liman ER, Zhang YV, Craig M (2014) Peripheral coding of taste. Neuron 81(5):984–1000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  480. Kawaguchi H, Yamanaka A, Uchida K, Shibasaki K, Sokabe T, Maruyama Y et al (2010) Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells. J Biol Chem 285(23):17277–17281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  481. Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflugers Arch 447(5):510–518

    Article  PubMed  CAS  Google Scholar 

  482. Jung H (2001) Towards the molecular mechanism of Na+/solute symport in prokaryotes. Biochim Biophys Acta Bioenerg 1505(1):131–143

    Article  CAS  Google Scholar 

  483. Harada N, Inagaki N (2012) Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. J Diabetes Invest 3(4):352–353

    Article  CAS  Google Scholar 

  484. Takata K, Hirano H, Kasahara M (1997) Transport of glucose across the blood-tissue barriers. Int Rev Cytol 172:1–53

    Article  PubMed  CAS  Google Scholar 

  485. Weale AR, Edwards AG, Bailey M, Lear PA (2005) Intestinal adaptation after massive intestinal resection. Postgrad Med J 81:178–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  486. Bertrand PP (2009) The cornucopia of intestinal chemosensory transduction. Front Neurosci 3:48

    PubMed  PubMed Central  Google Scholar 

  487. Sykaras AG, Demenis C, Case RM, McLaughlin JT, Smith CP (2012) Duodenal enteroendocrine I-cells contain mRNA transcripts encoding key endocannabinoid and fatty acid receptors. PLoS ONE 7(8):e42373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  488. Daly K, Al-Rammahi M, Moran A, Marcello M, Ninomiya Y, Shirazi-Beechey SP (2013) Sensing of amino acids by the gut-expressed taste receptor T1R1-T1R3 stimulates CCK secretion. Am J Physiol Gastrointest Liver Physiol 304(3):G271–G282

    Article  PubMed  CAS  Google Scholar 

  489. Gabriel AS, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45(3):451–461

    Article  CAS  Google Scholar 

  490. Talukdar S, Olefsky JM, Osborn O (2011) Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci 32(9):543–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  491. Hara T, Hirasawa A, Ichimura A, Kimura I, Tsujimoto G (2011) Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci 100(9):3594–3601

    Article  PubMed  CAS  Google Scholar 

  492. Ichimura A, Hirasawa A, Hara T, Tsujimoto G (2009) Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Other Lipid Mediat 89(3–4):82–88

    Article  PubMed  CAS  Google Scholar 

  493. Mohamed HA, Khaled DM, Mohamed HA (2014) Homology modeling and explicit membrane molecular dynamics simulation to delineate the mode of binding of thiazolidinediones into FFAR1 and the mechanism of receptor activation. Bioorg Med Chem Lett 24(22):5330–5336

    Article  CAS  Google Scholar 

  494. Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P et al (2009) An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 587:195–210

    Article  PubMed  CAS  Google Scholar 

  495. Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ (2011) The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol 25(6):1066–1071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  496. Motter AL, Ahern GP (2012) TRPA1 is a polyunsaturated fatty acid sensor in mammals. PLoS ONE 7(6):e38439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  497. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119

    Article  PubMed  CAS  Google Scholar 

  498. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S et al (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 108(19):8030–8035

    Article  PubMed  PubMed Central  Google Scholar 

  499. Gaetani S, Oveisi F, Piomelli D (2003) Modulation of meal pattern in the rat by the anorexic lipid mediator oleoylethanolamine. Neuropsychopharmacology 28(7):1311–1316

    Article  PubMed  CAS  Google Scholar 

  500. Criado AS, Pavon-Moron FJ, de Arco I, de Fonseca FR (2006) Oleoylethanolamide reverses changes in both fatty acid composition and desaturase mRNA expression in a new model of liver steatosis. Obes Metab 2(3):155–164

    Google Scholar 

  501. Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 14(6):277–288

    Article  PubMed  PubMed Central  Google Scholar 

  502. Eberle JA-M, Widmayer P, Breer H (2014) Receptors for short-chain fatty acids in brush cells at the “gastric groove”. Front Physiol 5:152

    Article  PubMed  PubMed Central  Google Scholar 

  503. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G et al (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10(3):167–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  504. Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ (2012) Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem Biophys Res Commun 427(3):600–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  505. Tiwari A, Maiti P (2009) TGR5: an emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov Today 14(9–10):523–530

    Article  PubMed  CAS  Google Scholar 

  506. Tu H, Okamoto AY, Shan B (2000) FXR, a bile acid receptor and biological sensor. Trends Cardiovasc Med 10(1):30–35

    Article  PubMed  CAS  Google Scholar 

  507. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M et al (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278(11):9435–9440

    Article  PubMed  CAS  Google Scholar 

  508. Duboc H, Taché Y, Hofmann AF (2014) The bile acid TGR5 membrane receptor: from basic research to clinical application. Int J Gatroenterol Hepatol 46(4):302–312

    CAS  Google Scholar 

  509. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM et al (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296(5571):1313–1316

    Article  PubMed  CAS  Google Scholar 

  510. Ajouz H, Mukherji D, Shamseddine A (2014) Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol 12:164

    Article  PubMed  PubMed Central  Google Scholar 

  511. Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H (2005) Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res/Rev Mutat Res 589(1):47–65

    Article  CAS  Google Scholar 

  512. Vuolo L, Di Somma C, Faggiano A, Colao A (2012) Vitamin D and cancer. Front Endocrinol (Lausanne) 3:58

    CAS  Google Scholar 

  513. Konstantakis C, Tselekouni P, Kalafateli M, Triantos C (2016) Vitamin D deficiency in patients with liver cirrhosis. Ann Gastroenterol 29(3):297–306

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menizibeya Osain Welcome MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Welcome, M.O. (2018). Molecular Mechanisms of Gastrointestinal Signaling. In: Gastrointestinal Physiology. Springer, Cham. https://doi.org/10.1007/978-3-319-91056-7_5

Download citation

Publish with us

Policies and ethics