Skip to main content

Intercellular Network of Junctions of the Gastrointestinal Tract

  • Chapter
  • First Online:
Book cover Gastrointestinal Physiology

Abstract

The peculiar organization of cells of the gastrointestinal tract, in part, is due to the integrity of the anatomical architecture of the linkages or junctions between the neighboring cells. In this chapter, the structural and functional characteristics of these junctions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

Bves:

Blood vessel epicardial substance

cAMP:

Cyclic adenosine monophosphate

CAR:

Coxsackievirus and adenovirus receptor

CaSR:

Ca2+-sensing receptor

cGMP:

Cyclic guanosine monophosphate

Cx:

Connexin

GK:

Guanylate kinase

GTP:

Guanosine triphosphate

Inx:

Innexin

IP3:

Inositol 1,4,5-triphosphate

JAM:

Junctional adhesion molecule

MAGUK:

Membrane-associated guanylate kinase

MARVEL:

MAL (myelin and lymphocyte) and related proteins for vesicle trafficking and membrane link

NAD:

Nicotinamide adenine dinucleotide

Panx:

Pannexin

PDZ:

Postsynaptic density, disk-large, ZO

PKC:

Protein kinase type C

Popdc:

Popeye domain-containing gene family of proteins

SH3:

Src (sarcoma) homology-3

ZO:

Zona occludens protein

Bibliography

  1. Fasano A (2012) Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci 1258(1):25–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lerner A, Matthias T (2015) Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimm Rev 14(6):479–489

    Article  CAS  Google Scholar 

  3. Lee SH (2015) Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res 13(1):11–18

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F (2016) Tight junction disruption induced by type 3 secretion system effectors injected by enteropathogenic and enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 6:87

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sharma R, Young C, Neu J (2010) Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol 2010:305879

    PubMed  PubMed Central  Google Scholar 

  6. Blaskewicz CD, Pudney J, Anderson DJ (2011) Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod 85(1):97–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Giepmans BNG, van IJzendoorn SCD (2009) Epithelial cell–cell junctions and plasma membrane domains. BBA—Biomembr 1788(4):820–831

    Article  CAS  Google Scholar 

  8. Günzel D, Yu ASL (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93(2):525–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Palade GE (1974) Intracellular aspects of the process of protein secretion. In: Nobel Lecture physiology or medicine. Almqvist & Wiksell International, Stockholm

    Google Scholar 

  10. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Diamond JM (1977) Twenty-first Bowditch Lecture. The epithelial junction: Bridge, gate, and fence. Physiol 20(1):10–18

    CAS  Google Scholar 

  12. Goodenough DA, Paul DL (2009) Gap Junctions. Cold Spring Harb Symp Quant Biol 1(1):a002576

    Google Scholar 

  13. Retamal MA, Reyes EP, García IE, Pinto B, Martínez AD, González C (2015) Diseases associated with leaky hemichannels. Front Cell Neurosci 9:267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mee G, Richard G, White TW (2007) Gap junctions: basic structure and function. J Invest Dermatol 127:2516–2524

    Article  CAS  Google Scholar 

  15. Scemes E, Spray DC, Meda P (2009) Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch 457(6):1207–1226

    Article  PubMed  CAS  Google Scholar 

  16. Söhl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232

    Article  PubMed  CAS  Google Scholar 

  17. Dahl G, Locovei S (2006) Pannexin: to gap or not to gap, is that a question? IUBMB Life 58(7):409–419

    Article  PubMed  CAS  Google Scholar 

  18. Frinchi M, Di Liberto V, Turimella S, D’Antoni F, Theis M, Belluardo N, Mudò G (2013) Connexin36 (Cx36) expression and protein detection in the mouse carotid body and myenteric plexus. Acta Histochem 115(3):252–256

    Article  PubMed  CAS  Google Scholar 

  19. Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84(3):381–388

    Article  PubMed  CAS  Google Scholar 

  20. Sohl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180

    Article  PubMed  Google Scholar 

  21. Le Vasseur M, Lelowski J, Bechberger JF, Sin W-C, Naus CC (2014) Pannexin 2 protein expression is not restricted to the CNS. Front Cell Neurosci 8:392

    Article  PubMed  PubMed Central  Google Scholar 

  22. Diezmos EF, Sandow SL, Markus I, Perera DS, Lubowski DZ, King DW et al (2013) Expression and localization of pannexin-1 hemichannels in human colon in health and disease. Neurogastroenterol Motil 25(6):e395–e405

    Article  PubMed  CAS  Google Scholar 

  23. Kanczuga-Koda L, Sulkowski S, Koda M, Sobaniec-Lotowska M, Sulkowska M (2004) Expression of connexins 26, 32 and 43 in the human colon–an immunohistochemical study. Folia Histochem Cytobiol 42(4):203–217

    PubMed  CAS  Google Scholar 

  24. Wang YF, Daniel EE (2001) Gap junctions in gastrointestinal muscle contain multiple connexins. Am J Physiol Gastrointest Liver Physiol 281(2):G533–G543

    Article  PubMed  CAS  Google Scholar 

  25. Nagy JI, Urena-Ramirez V, Ghia JE (2014) Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons. FEBS Lett 588(8):1480–1490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Palade GE (1975) Intracellular aspects of the process of protein synthesis. Sci 189:347–358

    Article  CAS  Google Scholar 

  27. Saucan L, Palade GE (1994) Membrane and secretory proteins are transported from the Golgi complex to the sinusoidal plasmalemma of hepatocytes by distinct vesicular carriers. J Cell Biol 125:733–741

    Article  PubMed  CAS  Google Scholar 

  28. Connors BW (2012) Tales of a dirty drug: carbenoxolone, gap junctions, and seizures. Epilepsy Curr 12(2):66–68

    Article  PubMed  PubMed Central  Google Scholar 

  29. Srinivas M, Hopperstad MG, Spray DC (2001) Quinine blocks specific gap junction channel subtypes. PNAS 98(19):10942–10947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Qi X, Varma P, Newman D, Dorian P (2001) Gap junction blockers decrease defibrillation thresholds without changes in ventricular refractoriness in isolated rabbit hearts. Circ 104:1544–1549

    Article  CAS  Google Scholar 

  31. Bai D, del Corsso C, Srinivas M, Spray DC (2006) Block of specific gap junction channel subtypes by 2-aminoethoxydiphenyl borate (2-APB). JPET 319(3):1452–1458

    Article  CAS  Google Scholar 

  32. Chiba H, Osanai M, Murata M, Kojima T, Sawada N (2008) Transmembrane proteins of tight junctions. BBA Biomembr 1778(3):588–600

    Article  CAS  Google Scholar 

  33. Hou J (2014) The kidney tight junction (Review). Int J Mol Med 34(6):1451–1457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Förster C (2008) Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 130(1):55–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1(2):a002584

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA et al (1996) A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87(6):1059–1068

    Article  PubMed  CAS  Google Scholar 

  37. Oshima K, Fehon RG (2011) Analysis of protein dynamics within the septate junction reveals a highly stable core protein complex that does not include the basolateral polarity protein Discs large. J Cell Sci 124(Pt 16):2861–2871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Juang JL, Carlson SD (1994) Analog of vertebrate anionic sites in blood-brain interface of larval Drosophila. Cell Tissue Res 277(1):87–95

    Article  PubMed  CAS  Google Scholar 

  39. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  PubMed  CAS  Google Scholar 

  40. Willis CL (2011) Glia-induced reversible disruption of blood–brain barrier integrity and neuropathological response of the neurovascular unit. Toxicol Patholvol 39(1):172–185

    Article  Google Scholar 

  41. Balda MS, Matter K (2008) Tight junctions at a glance. J Cell Sci 121:3677–3682

    Article  PubMed  CAS  Google Scholar 

  42. Mandel LJ, Bacallao R, Zampighi G (1993) Uncoupling of the molecular ‘fence’ and paracellular ‘gate’ functions in epithelial tight junctions. Nat 361(6412):552–555

    Article  CAS  Google Scholar 

  43. Landy J, Ronde E, English N, Clark SK, Hart AL, Knight SC et al (2016) Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J Gastroenterol 22(11):3117–3126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sánchez-Pulido L, Martín-Belmonte F, Valencia A, Alonso MA (2002) MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci 27(12):599–601

    Article  PubMed  Google Scholar 

  45. Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y et al (2010) Tight junction–associated MARVEL proteins MarvelD3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 21(7):1200–1213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wu Y-C, Liu C-Y, Chen Y-H, Chen R-F, Huang C-J, Wang I-J (2012) Blood vessel epicardial substance (Bves) regulates epidermal tight junction integrity through atypical protein kinase C. J Biol Chem 287:39887–39897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Abe K, Takeichi M (2008) EPLIN mediates linkage of the cadherin—catenin complex to F-actin and stabilizes the circumferential actin belt. PNAS 105(1):13–19

    Article  PubMed  Google Scholar 

  48. Cho KO, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9(5):929–942

    Article  PubMed  CAS  Google Scholar 

  49. Woods DF, Bryant PJ (1993) ZO-1, DlgA, PSD-95/SAP90: homologous proteins in tight, septate and synaptic cell junctions. Mech Dev 44:85–89

    Article  PubMed  CAS  Google Scholar 

  50. Overgaard CE, Daugherty BL, Mitchell LA, Koval M (2011) Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal 15(5):1179–1193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pei L (2016) Paracellular epithelial transport maximizes energy efficiency in the kidney. University of Kansas, Kansas, USA

    Google Scholar 

  53. Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1(2):a002584

    Article  PubMed  PubMed Central  Google Scholar 

  54. Markov AG, Amasheh S (2011) Barrier properties and tight junction protein expression along the longitudinal axis of rat intestine. Ross Fiziol Zh Im I M Sechenova 97(10):1066–1083

    PubMed  CAS  Google Scholar 

  55. Hou J (2012) Lecture: new light on the role of claudins in the kidney. Organogenesis 8(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gong Y, Hou J (2014) Claudin-14 underlies Ca++-sensing receptor-mediated Ca++ metabolism via NFAT-microRNA-based mechanisms. J Am Soc Nephrol 25(4):745–760

    Article  PubMed  CAS  Google Scholar 

  57. Amasheh S, Fromm M, Günzel D (2011) Claudins of intestine and nephron—a correlation of molecular tight junction structure and barrier function. Acta Physiol (Oxf) 201(1):133–140

    Article  CAS  Google Scholar 

  58. Markov AG, Falchuk EL, Kruglova NM, Rybalchenko OV, Fromm M, Amasheh S (2014) Comparative analysis of theophylline and cholera toxin in rat colon reveals an induction of sealing tight junction proteins. Pflugers Arch 466(11):2059–2065

    Article  PubMed  CAS  Google Scholar 

  59. Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U et al (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56(1):61–72

    Article  PubMed  CAS  Google Scholar 

  60. Mankertz J, Schulzke JD (2007) Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 23(4):379–383

    Article  PubMed  CAS  Google Scholar 

  61. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B et al (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterol 129(2):550–564

    Article  CAS  Google Scholar 

  62. Schulzke JD, Ploeger S, Amasheh M, Fromm A, Zeissig S, Troeger H et al (2009) Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci 1165:294–300

    Article  PubMed  Google Scholar 

  63. Hou J, Goodenough DA (2010) Claudin-16 and claudin-19 function in the thick ascending limb. Curr Opin Nephrol Hypertens 19(5):483–488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC (2010) The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010:402593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 138(1):181–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147(6):1351–1363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Woods DF, Bryant PJ (1993) ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate and synaptic cell junctions. Mech Dev 44(2–3):85–89

    Article  PubMed  CAS  Google Scholar 

  68. Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S (2008) The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. BBA Biomembranes 1778(3):601–613

    Article  PubMed  CAS  Google Scholar 

  69. Mariano C, Sasaki H, Brites D, Brito MA (2011) A look at tricellulin and its role in tight junction formation and maintenance. Eur J Cell Biol 90(10):787–796

    Article  PubMed  CAS  Google Scholar 

  70. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273(45):29745–29753

    Article  PubMed  CAS  Google Scholar 

  71. Kale G, Naren AP, Sheth P, Rao RK (2003) Tyrosine phosphorylation of occludin attenuates its interactions with ZO-1, ZO-2, and ZO-3. Biochem Biophys Res Commun 302(2):324–329

    Article  PubMed  CAS  Google Scholar 

  72. Choi W, Acharya BR, Peyret G, Fardin M-A, Mège R-M, Ladoux B et al (2016) Remodeling the zonula adherens in response to tension and the role of afadin in this response. J Cell Biol 213(2):243–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kamitani T, Sakaguchi H, Tamura A, Miyashita T, Yamazaki Y, Tokumasu R et al (2015) Deletion of tricellulin causes progressive hearing loss associated with degeneration of cochlear hair cells. Sci Rep 5:18402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK et al (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20(16):3713–3724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S-I, Ramzan K et al (2006) Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 79(6):1040–1051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Brand T (2005) The Popeye domain-containing gene family. Cell Biochem Biophys 43(1):95–103

    Article  PubMed  CAS  Google Scholar 

  77. Osler ME, Smith TK, Bader DM (2006) Bves, a member of the Popeye domain-containing gene family. Dev Dynam 235(3):586–593

    Article  CAS  Google Scholar 

  78. Hager HA, Bader DM (2009) Bves: ten years after. Histol Histopathol 24(6):777–787

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Wu Y-C, Chen R-F, Liu C-Y, Hu FR, Huang C-J, Wang I-J (2014) Knockdown of Zebrafish blood vessel epicardial substance results in incomplete retinal lamination. Sci World J 2014:803718

    Google Scholar 

  80. Andrée B, Hillemann T, Kessler-icekson G, Schmitt-john T, Jockusch H, Arnold HH, Brand T (2000) Isolation and characterization of the novel popeye gene family expressed in skeletal muscle and heart. Dev Biol 223(2):371–382

    Article  PubMed  CAS  Google Scholar 

  81. Schindler RFR, Brand T (2016) The Popeye domain containing protein family—a novel class of cAMP effectors with important functions in multiple tissues. Prog Biophys Mol Biol 120(1–3):28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Froese A, Breher SS, Waldeyer C, Schindler RF, Nikolaev VO, Rinné S et al (2012) Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. J Clin Invest 122(3):1119–1130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Smith TK, Bader DM (2006) Characterization of Bves expression during mouse development using newly generated immunoreagents. Dev Dynam 235:1701–1708

    Article  CAS  Google Scholar 

  84. Pardo JV, Craig SW (1979) alpha-Actinin localization in the junctional complex of intestinal epithelial cells. J Cell Biol 80:203–210

    Article  PubMed  Google Scholar 

  85. Renyong G, Hiroshi S, Shigeki S (2006) Endothelial cell motility is compatible with junctional integrity. J Cell Physiol 211:327–335

    Google Scholar 

  86. Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1(6):a002899

    Article  PubMed  PubMed Central  Google Scholar 

  87. Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, Brasch J et al (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Struct 19(2):244–256

    Article  CAS  Google Scholar 

  88. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778(3):660–669

    Article  PubMed  CAS  Google Scholar 

  89. Straub BK, Rickelt S, Zimbelmann R, Grund C, Kuhn C, Iken M et al (2011) E-N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells. J Cell Biol 195(5):873–887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Coopman P, Djiane A (2016) Adherens junction and E-Cadherin complex regulation by epithelial polarity. Cell Mol Life Sci 73(18):3535–3553

    Article  PubMed  CAS  Google Scholar 

  91. Hoffmann B, Schäfer C (2010) Filopodial focal complexes direct adhesion and force generation towards filopodia outgrowth. Cell Adh Migr 4(2):190–193

    Article  PubMed  PubMed Central  Google Scholar 

  92. Vasioukhin V, Fuchs E (2001) Actin dynamics and cell-cell adhesion in epithelia. Curr Opin Cell Biol 13(1):76–84

    Article  PubMed  CAS  Google Scholar 

  93. Green KJ, Simpson CL (2007) Desmosomes: new perspectives on a classic. J Invest Dermatol 127(11):2499–2515

    Article  PubMed  CAS  Google Scholar 

  94. Waschke J (2008) The desmosome and pemphigus. Histochem Cell Biol 130(1):21–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Green KJ, Gaudry CA (2000) Are desmosomes more than tethers for intermediate filaments? Nat Rev Mol Cell Biol 1:208–216

    Article  PubMed  CAS  Google Scholar 

  96. Garrod D, Chidgey M (2008) Desmosome structure, composition and function. Biochim Biophys Acta 1778(3):572–587

    Article  PubMed  CAS  Google Scholar 

  97. Kitajima Y (2013) New insights into desmosome regulation and pemphigus blistering as a desmosome-remodeling disease. Kaohsiung J Med Sci 29(1):1–13

    Article  PubMed  CAS  Google Scholar 

  98. Sumigray KD, Lechler T (2012) Desmoplakin controls microvilli length but not cell adhesion or keratin organization in the intestinal epithelium. Mol Biol Cell 23(5):792–799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Acehan D, Petzold C, Gumper I, Sabatini DD, Müller EJ, Cowin P, Stokes DL (2008) Plakoglobin is required for effective intermediate filament anchorage to desmosomes. J Invest Dermatol 128(11):2665–2675

    Article  PubMed  CAS  Google Scholar 

  100. Bornslaeger EA, Godsel LM, Corcoran CM, Park JK, Hatzfeld M, Kowalczyk AP, Green KJ (2001) Plakophilin 1 interferes with plakoglobin binding to desmoplakin, yet together with plakoglobin promotes clustering of desmosomal plaque complexes at cell-cell borders. J Cell Sci 114(Pt 4):727–738

    PubMed  CAS  Google Scholar 

  101. Holthöfer B, Windoffer R, Troyanovsky S, Leube RE (2007) Structure and function of desmosomes. Int Rev Cytol 264:65–163

    Article  PubMed  CAS  Google Scholar 

  102. Windoffer R, Borchert-Stuhlträger M, Leube RE (2002) Desmosomes: interconnected calcium-dependent structures of remarkable stability with significant integral membrane protein turnover. J Cell Sci 115(Pt 8):1717–1732

    PubMed  CAS  Google Scholar 

  103. Kowalczyk AP, Navarro P, Dejana E, Bornslaeger EA, Green KJ, Kopp DS, Borgwardt JE (1998) VE-cadherin and desmoplakin are assembled into dermal microvascular endothelial intercellular junctions: a pivotal role for plakoglobin in the recruitment of desmoplakin to intercellular junctions. J Cell Sci 111(Pt 20):3045–3057

    PubMed  CAS  Google Scholar 

  104. Hull BE, Staehelin LA (1979) The terminal web. A reevaluation of its structure and function. J Cell Biol 81(1):67–82

    Article  PubMed  CAS  Google Scholar 

  105. Brooke MA, Nitoiu D, Kelsell DP (2012) Cell-cell connectivity: desmosomes and disease. J Pathol 226(2):158–171

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menizibeya Osain Welcome MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Welcome, M.O. (2018). Intercellular Network of Junctions of the Gastrointestinal Tract. In: Gastrointestinal Physiology. Springer, Cham. https://doi.org/10.1007/978-3-319-91056-7_4

Download citation

Publish with us

Policies and ethics