Skip to main content

Structural and Functional Organization of the Gastrointestinal Tract

  • Chapter
  • First Online:
Gastrointestinal Physiology

Abstract

Gastrointestinal (GI) tract is organized into regions and layers with structural and functional peculiarities. The tract which begins from the mouth, extending to the anus, is comprised of different layers and tissues. The tissues, composed of different cells, play diverse roles and functions and they constitute the chief determinants of the state of GI functioning. Accessory organs of the GI tract (including the mesentery, which is currently regarded as an organ as well as its structural and functional unit) are discussed. In this chapter, the structural and functional organization of the entire GI tract is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CGRP:

Calcitonin gene-related peptide

EA:

Esophageal atresia

GI:

Gastrointestinal

ICCs:

Interstitial cells of Cajal

MAP:

Mitogen-activated protein

TEF:

Tracheoesophageal fistula

Bibliography

  1. Kararli TT (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16(5):351–380

    Article  PubMed  CAS  Google Scholar 

  2. Van de Graaff KM (1986) Anatomy and physiology of the gastrointestinal tract. Pediatr Infect Dis 5(1):S11–S16

    Article  PubMed  Google Scholar 

  3. Gelberg HB (2014) Comparative anatomy, physiology, and mechanisms of disease production of the esophagus, stomach, and small intestine. Toxicol Pathol 42(1):54–66

    Article  PubMed  CAS  Google Scholar 

  4. Kimmey MB, Martin RW, Haggitt RC, Wang KY, Franklin DW, Silverstein FE (1989) Histologic correlates of gastrointestinal ultrasound images. Gastroenterology 96(2 Pt 1):433–441

    Article  PubMed  CAS  Google Scholar 

  5. Spitz L (2007) Oesophageal atresia. Orphanet J Rare Dis 2:24

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sunitha T, Prasoona KR, Kumari TM, Srinadh B, Deepika MLN, Aruna R, Jyothy A (2017) Risk factors for congenital anomalies in high risk pregnant women: a large study from South India. Egypt J Med Hum Genet 18(1):79–85

    Article  Google Scholar 

  7. Sarkar S, Patra C, Dasgupta MK, Nayek K, Karmakar PR (2013) Prevalence of congenital anomalies in neonates and associated risk factors in a tertiary care hospital in Eastern India. J Clin Neonatol 2(3):131–134

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jiang X, Xu G, Shen L, Wu J, Chen H, Wang Y (2014) Influential factors on congenital gastrointestinal malformation: a hospital-based case-control study. Zhonghua Liu Xing Bing Xue Za Zhi 35(1):81–84

    PubMed  Google Scholar 

  9. Mashuda F, Zuechner A, Chalya PL, Kidenya BR, Manyama M (2014) Pattern and factors associated with congenital anomalies among young infants admitted at Bugando medical centre, Mwanza Tanzania. BMC Res Notes 7:195

    Article  PubMed  PubMed Central  Google Scholar 

  10. El-Helaly M, Abdel-Elah K, Haussein A, Shalaby H (2011) Paternal occupational exposures and the risk of congenital malformations—a case-control study. Int J Occup Med Environ Health 24(2):218–227

    Article  PubMed  Google Scholar 

  11. Okamoto T, Takamizawa S, Arai H, Bitoh Y, Nakao M, Yokoi A, Nishijima E (2009) Esophageal atresia: prognostic classification revisited. Surgery 145(6):675–681

    Article  PubMed  Google Scholar 

  12. Poenaru D, Laberge JM, Neilson IR, Guttman FM (1993) A new prognostic classification for esophageal atresia. Surgery 113(4):426–432

    PubMed  CAS  Google Scholar 

  13. Pinheiro PFM, e Silva ACS, Pereira RM (2012) Current knowledge on esophageal atresia. World J Gastroenterol 18(28):3662–3672

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shaw-Smith C (2006) Oesophageal atresia, tracheo-oesophageal fistula, and the VACTERL association: review of genetics and epidemiology. J Med Genet 43:545–554

    Article  PubMed  CAS  Google Scholar 

  15. Morgan RD, O’Callaghan JM, Wagener S, Grant HW, Lakhoo K (2012) Surgical correction of tracheo-oesophageal fistula and oesophageal atresia in infants with VACTERL association: a retrospective case-control study. Pediatr Surg Int 28(10):967–970

    Article  PubMed  Google Scholar 

  16. Carli D, Garagnani L, Lando M, Fairplay T, Bernasconi S, Landi A, Percesepe A (2014) VACTERL (vertebral defects, anal atresia, tracheoesophageal fistula with esophageal atresia, cardiac defects, renal and limb anomalies) association: disease spectrum in 25 patients ascertained for their upper limb involvement. J Pediatr 164(3):458–462 (e1–e2)

    Article  Google Scholar 

  17. La Placa S, Giuffrè M, Gangemi A, Di Noto S, Matina F, Nociforo F et al (2013) Esophageal atresia in newborns: a wide spectrum from the isolated forms to a full VACTERL phenotype? Ital J Pediatr 39:45

    Article  PubMed  PubMed Central  Google Scholar 

  18. Koçak H, Ozaydin E, Köse G, Marcelis CL, Kamsteeg EJ, Ceylaner S (2009) A Feingold syndrome case with previously undescribed features and a new mutation. Genet Couns 20(3):261–267

    PubMed  Google Scholar 

  19. Büttiker V, Wojtulewicz J, Wilson M (2000) Imperforate anus in Feingold syndrome. Am J Med Genet 92(3):166–169

    Article  PubMed  Google Scholar 

  20. Layman-Pleet L, Jackson CC, Chou S, Boycott KM (2007) Feingold syndome: a rare but important cause of syndromic tracheoesophageal fistula. J Pediatr Surg 42(9):E1–E3

    Article  PubMed  Google Scholar 

  21. Versteegh HP, van Rooij IALM, Levitt MA, Sloots CEJ, Wijnen RMH, de Blaauw I (2013) Long-term follow-up of functional outcome in patients with a cloacal malformation: a systematic review. J Pediatr Surg 48:2343–2350

    Article  PubMed  Google Scholar 

  22. Rintala RJ, Sistonen S, Pakarinen MP (2009) Outcome of esophageal atresia beyond childhood. Sem Pediatr Surg 18(1):50–56

    Article  CAS  Google Scholar 

  23. Terui K, Saito T, Mitsunaga T, Nakata M, Yoshida H (2015) Endoscopic management for congenital esophageal stenosis: a systematic review. World J Gastrointest Endosc 7(3):183–191

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stylopoulos N, Rattner DW (2005) The history of hiatal hernia surgery: from Bowditch to laparoscopy. Ann Surg 241(1):185–193

    PubMed  PubMed Central  Google Scholar 

  25. Lord RV, DeMeester SR, Peters JH, Hagen JA, Elyssnia D, Sheth CT, DeMeester TR (2009) Hiatal hernia, lower esophageal sphincter incompetence, and effectiveness of Nissen fundoplication in the spectrum of gastroesophageal reflux disease. J Gastrointest Surg 13(4):602–610

    Article  PubMed  Google Scholar 

  26. Kluth D, Fiegel H (2003) The embryology of the foregut. Semin Pediatr Surg 12(1):3–9

    Article  PubMed  Google Scholar 

  27. Kluth D, Steding G, Seidl W (1987) The embryology of foregut malformations. J Pediatr Surg 22(5):389–393

    Article  PubMed  CAS  Google Scholar 

  28. Metzger R, Wachowiak R, Kluth D (2011) Embryology of the early foregut. Sem Pediatr Surg 20(3):136–144

    Article  Google Scholar 

  29. Felix JF, de Jong EM, Torfs CP, de Klein A, Rottier RJ, Tibboel D (2009) Genetic and environmental factors in the etiology of esophageal atresia and/or tracheoesophageal fistula: an overview of the current concepts. Birth Defects Res A Clin Mol Teratol 85(9):747–754

    Article  PubMed  CAS  Google Scholar 

  30. Spilde TL, Bhatia AM, Mehta S, Ostlie DJ, Hembree MJ, Preuett BL et al (2003) Defective sonic hedgehog signaling in esophageal atresia with tracheoesophageal fistula. Surgery 134(2):345–350

    Article  PubMed  Google Scholar 

  31. Spilde TL, Bhatia AM, Marosky JK, Preuett B, Kobayashi H, Hembree MJ et al (2003) Fibroblast growth factor signaling in the developing tracheoesophageal fistula. J Pediatr Surg 38(3):474–477

    Article  PubMed  Google Scholar 

  32. Chuong C-M, Patel N, Lin J, Jung H-S, Widelitz RB (2000) Sonic hedgehog signaling pathway in vertebrate epithelial appendage morphogenesis: perspectives in development and evolution. Cell Mol Life Sci 57(12):1672–1681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Warburton D, Bellusci S, De Langhe S, Del Moral P-M, Fleury V, Mailleux A et al (2005) Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 57:26R–37R

    Article  PubMed  Google Scholar 

  34. Jacobs IJ, Que J (2013) Genetic and cellular mechanisms of the formation of esophageal atresia and tracheoesophageal fistula. Dis Esophagus 26(4):356–358

    Article  PubMed  CAS  Google Scholar 

  35. Kunisaki SM, Bruch SW, Hirschl RB, Mychaliska GB, Treadwell MC, Coran AG (2014) The diagnosis of fetal esophageal atresia and its implications on perinatal outcome. Pediatr Surg Int 30(10):971–977

    Article  PubMed  Google Scholar 

  36. Langer JC, Hussain H, Khan A, Minkes RK, Gray D, Siegel M, Ryan G (2001) Prenatal diagnosis of esophageal atresia using sonography and magnetic resonance imaging. J Pediatr Surg 36(5):804–807

    Article  PubMed  CAS  Google Scholar 

  37. Véronique H-D, Julien B (2011) Ultrasound and MRI prenatal diagnosis of esophageal atresia: effect on management. J Pediatr Gastroenterol Nutr 52:S9–S11

    Article  Google Scholar 

  38. Chang EY, Chang HK, Han SJ, Choi SH, Hwang EH, Oh J-T (2012) Clinical characteristics and treatment of esophageal atresia: a single institutional experience. J Korean Surg Soc 83(1):43–49

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kovesi T, Rubin S (2004) Long-term complications of congenital esophageal atresia and/or tracheoesophageal fistula. Chest 126(3):915–925

    Article  PubMed  Google Scholar 

  40. Kovesi T (2013) Long-term respiratory complications of congenital esophageal atresia with or without tracheoesophageal fistula: an update. Dis Esophagus 26(4):413–416

    Article  PubMed  CAS  Google Scholar 

  41. Shah R, Varjavandi V, Krishnan U (2015) Predictive factors for complications in children with esophageal atresia and tracheoesophageal fistula. Dis Esophagus 28(3):216–223

    Article  PubMed  CAS  Google Scholar 

  42. Spitz L, Kiely E, Brereton RJ, Drake D (1993) Management of esophageal atresia. World J Surg 17(3):296–300

    Article  PubMed  CAS  Google Scholar 

  43. Michaud L, Coutenier F, Podevin G, Bonnard A, Becmeur F, Khen-Dunlop N et al (2013) Characteristics and management of congenital esophageal stenosis: findings from a multicenter study. Orphanet J Rare Dis 8:186

    Article  PubMed  PubMed Central  Google Scholar 

  44. Serrao E, Santos A, Gaivao A, Tavares A, Ferreira S (2010) Congenital esophageal stenosis: a rare case of dysphagia. J Radiol Case Rep 4:8–14

    PubMed  PubMed Central  Google Scholar 

  45. Rastogi R, Majid A, Singh VP, Joon P, Gupta Y (2016) Congenital esophageal stenosis: a rare case of childhood dysphasia. J Gastrointest Dig Syst 6:2

    Google Scholar 

  46. Yousef MM, Yantiss RK, Baker SP, Banner BF (2006) Duodenal intraepithelial lymphocytes in inflammatory disorders of the esophagus and stomach. Clin Gastroenterol Hepatol 4(5):631–634

    Article  PubMed  Google Scholar 

  47. Pereverzev VA, Lobanok LM (2014) Physiology of digestion. In: Kubarko AI (ed) Normal physiology. In two parts. Part 1. Visheishaya Shkola, Minsk, Belarus

    Google Scholar 

  48. Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. In: 2 parts. Part 1. Belarusian State Medical University Press, Minsk

    Google Scholar 

  49. Kim SK, Cho CD, Wojtowycz AR (2008) The ligament of treitz (the suspensory ligament of the duodenum): anatomic and radiographic correlation. Abdom Imaging 33(4):395–397

    Article  PubMed  Google Scholar 

  50. Jabbour SK, Hashem SA, Bosch W, Kim TK, Finkelstein SE, Anderson BM et al (2014) Upper abdominal normal organ contouring guidelines and atlas: a radiation therapy oncology group consensus. Pract Radiat Oncol 4(2):82–89

    Article  PubMed  Google Scholar 

  51. Meyers MA (1995) Treitz redux: the ligament of treitz revisited. Abdom Imaging 20(5):421–424

    Article  PubMed  CAS  Google Scholar 

  52. Shafik A, El Sibai O, Shafik AA, Shafik IA (2006) Demonstration of a physiologic sphincter at duodeno-jejunal junction. Front Biosci 11:2790–2794

    Article  PubMed  Google Scholar 

  53. Saenko VF, Virchenko SB, Kucherenko TL, Ettinger AP, Belianskiĭ LS, Llu Markulan (1990) The role of the duodenojejunal junction in regulating the evacuatory function of the duodenum. Fiziol Zh 36(4):56–63

    PubMed  CAS  Google Scholar 

  54. Virchenko SB, Sayenko VF, Kucherenko TL, Tsedik NN, Elbrønd H, Djurhuus JC, Funch-Jensen P (1993) The duodenojejunal junction and treitz ligament in the regulation of duodenal emptying. Scand J Gastroenterol 28(9):753–759

    Article  PubMed  CAS  Google Scholar 

  55. Hamilton KL, Butt AG (2013) Glucose transport into everted sacs of the small intestine of mice. Adv Physiol Educ 37(4):415–426

    Article  PubMed  Google Scholar 

  56. Matsumoto S, Miyatani H, Yoshida Y (2015) Future directions of duodenal endoscopic submucosal dissection. World J Gastrointest Endosc 7(4):389–395

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685

    Article  PubMed  CAS  Google Scholar 

  58. Rodriguez-Bigas MA, Lin EH, Crane CH (2003) Surgical anatomy. In: Kufe DW, Pollock RE, Weichselbaum RR, Bast RC Jr, Gansler TS, Holland JF, Frei E III (eds) Holland-frei cancer medicine, 6th edn. Hamilton, ON, BC Decker

    Google Scholar 

  59. Sadahiro S, Ohmura T, Yamada Y, Saito T, Taki Y (1992) Analysis of length and surface area of each segment of the large intestine according to age, sex and physique. Surg Radiol Anat 14(3):251–257

    Article  PubMed  CAS  Google Scholar 

  60. Camilleri M, Ford MJ (1998) Colonic sensorimotor physiology in health, and its alteration in constipation and diarrhoeal disorders. Aliment Pharmacol Ther 12:287–302

    Article  PubMed  CAS  Google Scholar 

  61. Liao D-H, Zhao J-B, Gregersen H (2009) Gastrointestinal tract modelling in health and disease. World J Gastroenterol 15(2):169–176

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liao D, Frøkjaer JB, Yang J, Zhao J, Drewes AM, Gilja OH, Gregersen H (2006) Three-dimensional surface model analysis in the gastrointestinal tract. World J Gastroenterol 12(18):2870–2875

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shen L (2009) Functional morphology of the gastrointestinal tract. Curr Top Microbiol Immunol 337:1–35

    PubMed  CAS  Google Scholar 

  64. Balbi V, Ciarletta P (2013) Morpho-elasticity of intestinal villi. J R Soc Interface 10(82):20130109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kvietys PR, Granger DN (2010) Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Ann N Y Acad Sci 1207(1):E29–E43

    Article  PubMed  PubMed Central  Google Scholar 

  66. Howard ER (2013) Joseph Lister: his contributions to early experimental physiology. Notes Rec R Soc Lond 67(3):191–198

    Article  PubMed Central  Google Scholar 

  67. Spencer NJ, Dinning PG, Brookes SJ, Costa M (2016) Insights into the mechanisms underlying colonic motor patterns. J Physiol 594(15):4099–4116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Eastwood PR, Katagiri S, Shepherd KL, Hillman DR (2007) Modulation of upper and lower esophageal sphincter tone during sleep. Sleep Med 8(2):135–143

    Article  PubMed  Google Scholar 

  69. Lang IM, Shaker R (1997) Anatomy and physiology of the upper esophageal sphincter. Am J Med 103(5A):50S–55S

    Article  PubMed  CAS  Google Scholar 

  70. Mittal RK, Liu J (2005) Flow across the gastro-esophageal junction: lessons from the sleeve sensor on the nature of anti-reflux barrier. Neurogastroenterol Motil 17(2):187–190

    Article  PubMed  CAS  Google Scholar 

  71. Dj Saranović, Ilić N, Stafanović Z, Kasiković M (1991) Colonic sphincters—Hirsch’s sphincter. Srp Arh Celok Lek 119(5–6):166–168

    Google Scholar 

  72. Gagliardi JA, Radvany MG, Kilkenny TE, Russo RD Jr (1994) Colonic sphincters revisited: simulators of organic disease. Hawaii Med J 53(10):278–282

    PubMed  CAS  Google Scholar 

  73. Costa M, Brookes S, Hennig G (2000) Anatomy and physiology of the enteric nervous system. Gut 47(4):iv15–iv19

    Google Scholar 

  74. Odegaard S, Nesje LB, Hoff DA, Gilja OH, Gregersen H (2006) Morphology and motor function of the gastrointestinal tract examined with endosonography. World J Gastroenterol 12(18):2858–2863

    Article  PubMed  PubMed Central  Google Scholar 

  75. Goyal RK (2000) Targets of enteric motor neurones: smooth muscle cells. Gut 47(4):iv38–39; discussion iv52

    Article  Google Scholar 

  76. Liao D, Lelic D, Gao F, Drewes AM, Gregersen H (2008) Biomechanical functional and sensory modelling of the gastrointestinal tract. Philos Trans A Math Phys Eng Sci 366(1879):3281–3299

    Article  PubMed  Google Scholar 

  77. Dahm R (2010) From discovering to understanding. EMBO Rep 11(3):153–160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Takaki M (2003) Gut pacemaker cells: the interstitial cells of Cajal (ICC). J Smooth Muscle Res 39(5):137–161

    Article  PubMed  Google Scholar 

  79. Al-Shboul OA (2013) The importance of interstitial cells of Cajal in the gastrointestinal tract. Saudi J Gastroenterol 19(1):3–15

    Article  PubMed  PubMed Central  Google Scholar 

  80. Huizinga JD, Chen J-H, Mikkelsen HB, Wang X-Y, Parsons SP, Zhu YF (2013) Interstitial cells of Cajal, from structure to function. Front Neurosci 7:43

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pakurar AS, Bigbee JW (2004) Digital histology: an interactive CD atlas with review text. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  82. Hosseini SV, Abbasi HR, Rezvani H, Vasei M, Ashraf MJ (2009) Comparison between gallbladder serosal and mucosal patch in duodenal injuries repair in dogs. J Invest Surg 22(2):148–153

    Article  PubMed  Google Scholar 

  83. Oliphant R, Gardiner S, Reid R, McPeake J, Porteous C (2007) Glomus tumour of the ascending colon. J Clin Pathol 60(7):846

    Article  PubMed  PubMed Central  Google Scholar 

  84. American Joint Committee on Cancer (2010) Colon and rectum. In: AJCC cancer staging manual, 7th edn. Springer, New York

    Google Scholar 

  85. Amrani S, Polcino M, Rodriguez-Bigas M, Chu QD (2015) Colon cancer. In: Chu Q, Gibbs J, Zibari G (eds) Surgical oncology. Springer, New York

    Google Scholar 

  86. Gartner LP, Hiatt JL, Strum JM (2003) Board review series. Cell biology and histology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  87. Barrett KE (2012) Epithelial biology in the gastrointestinal system: insights into normal physiology and disease pathogenesis. J Physiol 590(Pt 3):419–420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Nagpal R, Patel A, Gibson MC (2008) Epithelial topology. BioEssays 30(3):260–266

    Article  PubMed  Google Scholar 

  89. Bellmann S, Carlander D, Fasano A, Momcilovic D, Scimeca JA, Waldman WJ et al (2015) Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. WIREs Nanomed Nanobiotechnol 7:609–622

    PubMed  CAS  Google Scholar 

  90. Bullen TF, Forrest S, Campbell F, Dodson AR, Hershman MJ, Pritchard DM et al (2006) Characterization of epithelial cell shedding from human small intestine. Lab Invest 86:1052–1063

    Article  PubMed  CAS  Google Scholar 

  91. Rao JN, Wang J-Y (2010) Regulation of gastrointestinal mucosal growth. Morgan & Claypool Life Sciences, San Rafael, CA

    Google Scholar 

  92. San Roman AK, Shivdasani RA (2011) Boundaries, junctions and transitions in the gastrointestinal tract. Exp Cell Res 317(19):2711–2718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Shoemark A, Burgoyne T, Dixon M, Luther P, Hogg C (2012) Three dimensional ultrastructure of human respiratory cilia in health and disease. Cilia 1(1):47

    Google Scholar 

  94. Chilvers M, Rutman A, O’Callaghan C (2003) Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults. Thorax 58(4):333–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Roffler B, Fäh A, Sauter SN, Hammon HM, Gallmann P, Brem G, Blum JW (2003) Intestinal morphology, epithelial cell proliferation, and absorptive capacity in neonatal calves fed milk-born insulin-like growth factor-I or a colostrum extract. J Dairy Sci 86(5):1797–1806

    Article  PubMed  CAS  Google Scholar 

  96. Villasenor A, Chong DC, Henkemeyer M, Cleaver O (2010) Epithelial dynamics of pancreatic branching morphogenesis. Development 137:4295–4305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Amano O, Mizobe K, Ya Bando, Sakiyama K (2012) Anatomy and histology of rodent and human major salivary glands—overview of the Japan salivary gland society-sponsored workshop. Acta Histochem Cytochem 45(5):241–250

    Article  PubMed  PubMed Central  Google Scholar 

  98. Redman RS (2008) On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem 83(3):103–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Nolte T, Brander-Weber P, Dangler C, Deschl U, Elwell MR, Greaves P et al (2016) Nonproliferative and proliferative lesions of the gastrointestinal tract, pancreas and salivary glands of the rat and mouse. J Toxicol Pathol 29(1):1S–125S

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bohórquez DV, Liddle RA (2015) The gut connectome: making sense of what you eat. J Clin Invest 125(3):888–890

    Article  PubMed  PubMed Central  Google Scholar 

  101. Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J (2011) Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, Part 1: oral solutions. J Pharm Sci 100(12):5324–5345

    Article  PubMed  CAS  Google Scholar 

  102. Helander HF, Fändriks L (2014) Surface area of the digestive tract—revisited. Scand J Gastroenterol 49(6):681–689

    Article  PubMed  Google Scholar 

  103. Alexander JS, Ganta VC, Jordan PA, Witte MH (2010) Gastrointestinal lymphatics in health and disease. Pathophysiology 17(4):315–335

    Article  PubMed  CAS  Google Scholar 

  104. Lim S-S, Low FN (1988) Morphological changes in the developing alimentary canal: a review by scanning electron microscopy. In: Motta PM, Fujita H, Correr S (eds) Ultrastructure of the digestive tract. Electron microscopy in biology and medicine (current topics in ultrastructural research), vol 4. Springer, Boston, MA

    Google Scholar 

  105. Von Kölliker A (1968/1817–1905) Würzburger histologist. JAMA 206(9):2111–2112

    Google Scholar 

  106. De Santa PB, Van Den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60(7):1322–1332

    Article  CAS  Google Scholar 

  107. Madara JL, Wolf JL, Trier JS (1982) Structural features of the rat small intestinal microvillus membrane in acute experimental diabetes. Digest Dis Sci 27(9):801–806

    Article  PubMed  CAS  Google Scholar 

  108. Walton KD, Kolterud Å, Czerwinski MJ, Bell MJ, Prakash A, Kushwaha J et al (2012) Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi. PNAS 109(39):15817–15822

    Article  PubMed  PubMed Central  Google Scholar 

  109. Vieira WA, Pretorius E (2010) The impact of asthma on the gastrointestinal tract (GIT). J Asthma Allergy 3:123–130

    PubMed  PubMed Central  Google Scholar 

  110. Yen TH, Wright NA (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2(3):203–212

    Article  PubMed  CAS  Google Scholar 

  111. Fennerty MB (1999) Tissue staining (chromoscopy) of the gastrointestinal tract. Can J Gastroenterol 13(5):423–429

    Article  PubMed  CAS  Google Scholar 

  112. Wong WM, Wright NA (1999) Cell proliferation in gastrointestinal mucosa. J Clin Pathol 52(5):321–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Tappenden KA (2006) Mechanisms of enteral nutrient-enhanced intestinal adaptation. Gastroenterology 130(2):S93–S99

    Article  PubMed  CAS  Google Scholar 

  114. Claus R, Günthner D, Letzguß H (2007) Effects of feeding fat-coated butyrate on mucosal morphology and function in the small intestine of the pig. J Anim Physiol Anim Nutr 91(7–8):312–318

    Article  CAS  Google Scholar 

  115. Wang J (2012) Pathologic aspects of tumors of gastrointestinal tract in the era of personalized medicine. J Gastrointest Oncol 3(3):151–152

    PubMed  PubMed Central  Google Scholar 

  116. Rubin E, Farber JL (1990) Environmental diseases of the digestive system. Med Clin North Am 74(2):413–424

    Article  PubMed  CAS  Google Scholar 

  117. JimÉnez RM, Connolly S, Blickman JG, Hoogeveen YL (2008) Accessory organs of digestion. In: Devos AS, Blickman JG (eds) Radiological imaging of the digestive tract in infants and children. Part of the series medical radiology. Springer, Berlin, Heidelberg

    Google Scholar 

  118. Coffey JC, O’Leary DP (2016) The mesentery: structure, function, and role in disease. Lancet Gastroenterol Hepatol 1(3):238–247

    Article  PubMed  Google Scholar 

  119. Sundler F (2004) GI tract, general anatomy (cells). Encyclopedia of Endocrine Diseases

    Chapter  Google Scholar 

  120. Soffers JH, Hikspoors JP, Mekonen HK, Koehler SE, Lamers WH (2015) The growth pattern of the human intestine and its mesentery. BMC Dev Biol 15:31

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kachlik D, Baca V, Stingl J (2010) The spatial arrangement of the human large intestinal wall blood circulation. J Anat 216(3):335–343

    Article  PubMed  PubMed Central  Google Scholar 

  122. Jedrzejewski KS, Cendrowska I, Okraszewska E (2002) Evaluation of several methods used in anatomical investigations of the blood and lymphatic vessels. Folia Morphol (Warsz) 61(2):63–69

    Google Scholar 

  123. Mutsaers SE (2004) The mesothelial cell. Int J Biochem Cell Biol 36(1):9–16

    Article  PubMed  CAS  Google Scholar 

  124. Jansson L, Barbu A, Bodin B, Carlsson P-O (2016) Pancreatic islet blood flow and its measurement. Upsala J Med Sci 121(2):1–15

    Article  Google Scholar 

  125. Granger DN, Holm L, Kvietys P (2015) The gastrointestinal circulation: physiology and pathophysiology. Compr Physiol 5(3):1541–1583

    Article  PubMed  Google Scholar 

  126. Parks DA, Jacobson ED (1985) Physiology of the splanchnic circulation. Arch Intern Med 145(7):1278–1281

    Article  PubMed  CAS  Google Scholar 

  127. Clemmesen O (2002) Splanchnic circulation and metabolism in patients with acute liver failure. Dan Med Bull 49(3):177–193

    PubMed  CAS  Google Scholar 

  128. Mukhtar A, Dabbous H (2016) Modulation of splanchnic circulation: role in perioperative management of liver transplant patients. World J Gastroenterol 22(4):1582–1592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ackland G, Grocott MPW, Mythen MG (2000) Understanding gastrointestinal perfusion in critical care: so near, and yet so far. Crit Care 4(5):269–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kvietys PR (2010) The gastrointestinal circulation. Morgan & Claypool Life Sciences, San Rafael, CA

    Google Scholar 

  131. Walker TG (2009) Mesenteric vasculature and collateral pathways. Semin Intervent Radiol 26(3):167–174

    Article  PubMed  PubMed Central  Google Scholar 

  132. Graf O, Boland GW, Kaufman JA, Warshaw AL, Fernandez del Castillo C, Mueller PR (1997) Anatomic variants of mesenteric veins: depiction with helical CT venography. AJR Am J Roentgenol 168(5):1209–1213

    Article  PubMed  CAS  Google Scholar 

  133. Kim PTW, Klintmalm GB (2016) Importance of hepatic flows in liver transplantation. J Hepatol Gastroint Dis 2:2

    Google Scholar 

  134. Eipel C, Ke Abshagen, Vollmar B (2010) Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol 16(48):6046–6057

    Article  PubMed  PubMed Central  Google Scholar 

  135. Matsuura T, Gad MZ, Harrison EH, Ross AC (1997) Lecithin: retinol acyltransferase and retinyl ester hydrolase activities are differentially regulated by retinoids and have distinct distributions between hepatocyte and nonparenchymal cell fractions of rat liver. J Nutr 127(2):218–224

    Article  PubMed  CAS  Google Scholar 

  136. Kumar A, Tripathi A, Jain S (2011) Extracorporeal bioartificial liver for treating acute liver diseases. J Extra Corpor Technol 43(4):195–206

    PubMed  PubMed Central  Google Scholar 

  137. Tabata K, Yamaoka K, Fukuyama T, Nakagawa T (1995) Evaluation of intestinal absorption into the portal system in enterohepatic circulation by measuring the difference in portal-venous blood concentrations of diclofenac. Pharm Res 12(6):880–883

    Article  PubMed  CAS  Google Scholar 

  138. Ponziani FR, Zocco MA, Campanale C, Rinninella E, Tortora A, Di Maurizio L et al (2010) Portal vein thrombosis: insight into physiopathology, diagnosis, and treatment. World J Gastroenterol 16(2):143–155

    Article  PubMed  PubMed Central  Google Scholar 

  139. Douard R, Chevallier JM, Delmas V, Cugnenc PH (2006) Clinical interest of digestive arterial trunk anastomoses. Surg Radiol Anat 28(3):219–227

    Article  PubMed  Google Scholar 

  140. Geboes K, Geboes KP, Maleux G (2001) Vascular anatomy of the gastrointestinal tract. Best Pract Res Clin Gastroenterol 15(1):1–14

    Article  PubMed  CAS  Google Scholar 

  141. Vandamme JP, Bonte J (1985) The branches of the celiac trunk. Acta Anat (Basel) 122(2):110–114

    Article  CAS  Google Scholar 

  142. Nayak SR, Prabhu LV, Krishnamurthy A, Ganesh Kumar C, Ramanathan LA, Acharya A, Prasad SA (2008) Additional branches of celiac trunk and its clinical significance. Rom J Morphol Embryol 49(2):247–249

    PubMed  CAS  Google Scholar 

  143. Lovisetto F, De Lorenzi FG, Stancampiano P, Corradini C, De Cesare F, Geraci O, Manzi M, Arceci F (2012) Thrombosis of celiacomesenteric trunk: report of a case. World J Gastroenterol 18(29):3917–3920

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yan J, Nagasawa Y, Nakano M, Hitomi J (2014) Origin of the celiac and superior mesenteric arteries in a common trunk: description of a rare vessel variation of the celiacomesenteric trunk with a literature review. Okajimas Folia Anat Jpn 91(2):45–48

    Article  PubMed  Google Scholar 

  145. He H, Long Y, Liu D, Wang X, Zhou X (2015) Clinical classification of tissue perfusion based on the central venous oxygen saturation and the peripheral perfusion index. Crit Care 19(1):330

    Article  PubMed  PubMed Central  Google Scholar 

  146. Pieńkowska J, Gwoździewicz K, Skrobisz-Balandowska K, Marek I, Kostro J, Szurowska E et al (2016) Perfusion-CT—can we predict acute pancreatitis outcome within the first 24 hours from the onset of symptoms? PLoS ONE 11(1):e0146965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Hulten L, Jodal M, Lindhagen J, Lundgren O (1976) Blood flow in the small intestine of cat and man as analyzed by an inert gas washout technique. Gastroenterology 70(1):45–51

    PubMed  CAS  Google Scholar 

  148. Hultén L, Lindhagen J, Lundgren O, Fasth S, Ahrén C (1977) Regional intestinal blood flow in ulcerative colitis and Crohn’s disease. Gastroenterology 72(3):388–396

    PubMed  Google Scholar 

  149. Hasibeder W (2010) Gastrointestinal microcirculation: still a mystery? Br J Anaesth 105(4):393–396

    Article  PubMed  CAS  Google Scholar 

  150. Someya N, Endo MY, Fukuba Y, Hayashi N (2008) Blood flow responses in celiac and superior mesenteric arteries in the initial phase of digestion. Am J Physiol Regul Integr Comp Physiol 294(6):R1790–R1796

    Article  PubMed  CAS  Google Scholar 

  151. Matheson PJ, Wilson MA, Garrison RN (2000) Regulation of intestinal blood flow. J Surg Res 93:182–196

    Article  PubMed  CAS  Google Scholar 

  152. de Oliveira EP, Burini RC, Jeukendrup A (2014) Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med 44:79–85

    Article  PubMed Central  Google Scholar 

  153. van Wijck K, Lenaerts K, van Loon LJC, Peters WHM, Buurman WA, Dejong CHC (2011) Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS ONE 6(7):e22366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Schumacker PT, Samsel RW (1989) Oxygen delivery and uptake by peripheral tissues: physiology and pathophysiology. Crit Care Clin 5(2):255–269

    Article  PubMed  CAS  Google Scholar 

  155. Guzman JA, Lacoma FJ, Kruse JA (1998) Relationship between systemic oxygen supply dependency and gastric intramucosal PCO2 during progressive hemorrhage. J Trauma 44:696–700

    Article  PubMed  CAS  Google Scholar 

  156. Sabnis A, Carrasco R, Liu SX, Yan X, Managlia E, Chou PM et al (2015) Intestinal vascular endothelial growth factor is decreased in necrotizing enterocolitis. Neonatology 107(3):191–198

    Article  PubMed  CAS  Google Scholar 

  157. Hu D, Cai D, Rangan AV (2012) Blood vessel adaptation with fluctuations in capillary flow distribution. PLoS ONE 7(9):e45444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Stan RV, Tse D, Deharvengt SJ, Smits NC, Xu Y, Luciano MR et al (2012) The diaphragms of fenestrated endothelia—gatekeepers of vascular permeability and blood composition. Dev Cell 23(6):1203–1218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Satchell SC, Braet F (2009) Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol 296(5):F947–F956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85(3):979–1000

    Article  PubMed  CAS  Google Scholar 

  161. Benett HS, Luft JH, Hampton JC (1959) Morphological classifications of vertebrate blood capillaries. Am J Physiol 196:381–390

    Google Scholar 

  162. Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Henderson JR, Moss MC (1985) A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol 70(3):347–356

    Article  PubMed  CAS  Google Scholar 

  164. Aharinejad S, Böck P (1994) Identification of fenestrated capillary segments in microvascular corrosion casts of the rat exocrine pancreas. Scanning 16(4):209–214

    Article  PubMed  CAS  Google Scholar 

  165. Strell C, Entschladen F (2008) Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  166. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function and mechanisms. Circ Res 100:158–173

    Article  PubMed  CAS  Google Scholar 

  167. Pries AR, Kuebler WM (2006) Normal endothelium. In: Moncada S, Higgs A (eds) Handbook of pharmacology: the vascular endothelium

    Google Scholar 

  168. Aoyagi T, Koshimizu T, Tanoue A (2009) Vasopressin regulation of blood pressure and volume: findings from V1a receptor–deficient mice. Kidney Int 76(10):1035–1039

    Article  PubMed  CAS  Google Scholar 

  169. Gordan R, Gwathmey JK, Xie L-H (2015) Autonomic and endocrine control of cardiovascular function. World J Cardiol 7(4):204–214

    Article  PubMed  PubMed Central  Google Scholar 

  170. Richardson PD (1982) Physiological regulation of the hepatic circulation. Fed Proc 41(6):2111–2116

    PubMed  CAS  Google Scholar 

  171. Carlton LD, Pollack GM, Brouwer KL (1996) Physiologic pharmacokinetic modeling of gastrointestinal blood flow as a rate-limiting step in the oral absorption of digoxin: implications for patients with congestive heart failure receiving epoprostenol. J Pharm Sci 85(5):473–477

    Article  PubMed  CAS  Google Scholar 

  172. Mukhtar A, Dabbous H (2016) Modulation of splanchnic circulation: role in perioperative management of liver transplant patients. World J Gastroenterol 22(4):1582–1592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Balaram SK, Markham J, DeRose JJ (2008) Minimally invasive perfusion techniques. In: Mongero LB, Beck JR (eds) On bypass: current cardiac surgery. Humana Press, NY

    Google Scholar 

  174. Ruffolo DC (1998) Gastric tonometry: early warning of tissue hypoperfusion. Crit Care Nurs Q 21(3):26–32

    Article  PubMed  CAS  Google Scholar 

  175. Marshall AP, West SH (2004) Gastric tonometry and monitoring gastrointestinal perfusion: using research to support nursing practice. Nurs Crit Care 9(3):123–133

    Article  PubMed  Google Scholar 

  176. Eachempati SR, Barie PS (1999) Minimally invasive and noninvasive diagnosis and therapy in critically ill and injured patients. Arch Surg 134(11):1189–1196

    Article  PubMed  CAS  Google Scholar 

  177. Lima A, Bakker J (2006) Noninvasive monitoring of peripheral perfusion. In: Applied physiology in intensive care medicine. Springer, Berlin, Heidelberg

    Google Scholar 

  178. Sarkaria IS, Bains MS, Finley DJ, Adusumilli PS, Huang J, Rusch VW et al (2014) Intraoperative near-infrared fluorescence imaging as an adjunct to robotic assisted minimally invasive esophagectomy. Innovations (Phila) 9(5):391–393

    Article  Google Scholar 

  179. Fikfak V, Gaur P, Kima MP (2016) Endoscopic evaluation of gastric conduit perfusion in minimally invasive Ivor Lewis esophagectomy. Int J Surg Case Rep 19:112–114

    Article  PubMed  Google Scholar 

  180. Zehetner J, DeMeester SR, Alicuben ET, Oh DS, Lipham JC, Hagen JA, DeMeester TR (2015) Intraoperative assessment of perfusion of the gastric graft and correlation with anastomotic leaks after esophagectomy. Ann Surg 262(1):74–78

    Article  PubMed  Google Scholar 

  181. Otte JA, Geelkerken RH, Huisman AB, Kolkman JJ (2007) What Is the best diagnostic approach for chronic gastrointestinal ischemia [quest]. Am J Gastroenterol 102:2005–2010

    Article  PubMed  Google Scholar 

  182. Atef HM, Fattah SA, Gaffer MEA, Al Rahman AA (2013) Perfusion index versus non-invasive hemodynamic parameters during insertion of i-gel, classic laryngeal mask airway and endotracheal tube. Indian J Anaesth 57(2):156–162

    Article  PubMed  PubMed Central  Google Scholar 

  183. Jeng EI, Gravenstein N, Klodell CT (2017) Perfusion index: an indicator of success during endoscopic thoracic sympathectomy for hyperhidrosis. Ann Thorac Surg 104(2):426–430

    Article  PubMed  Google Scholar 

  184. Lima A, Bakker J (2005) Noninvasive monitoring of peripheral perfusion. Intensive Care Med 31(10):1316–1326

    Article  PubMed  Google Scholar 

  185. Rovenská E, Rovenský J (2011) Lymphatic vessels: structure and function. IMAJ 13:762–768

    PubMed  Google Scholar 

  186. Breslin JW (2014) Mechanical forces and lymphatic transport. Microvasc Res 96:46–54

    Article  PubMed  Google Scholar 

  187. Gashev AA (2002) Physiologic aspects of lymphatic contractile function: current perspectives. Ann N Y Acad Sci 979:178–196

    Article  PubMed  Google Scholar 

  188. Al-Busafi SA, Ghali P, Deschênes M, Wong P (2014) Chylous ascites: evaluation and management. ISRN Hepatol 240473:1–10

    Article  Google Scholar 

  189. Miller MJ, McDole JR, Newberry RD (2010) Microanatomy of the intestinal lymphatic system. Ann N Y Acad Sci 1207:E21–E28

    Article  PubMed  PubMed Central  Google Scholar 

  190. Choe K, Jang JY, Park I, Kim Y, Ahn S, Park DY et al (2015) Intravital imaging of intestinal lacteals unveils lipid drainage through contractility. J Clin Invest 125(11):4042–4052

    Article  PubMed  PubMed Central  Google Scholar 

  191. Rasmussen JC, Tan I-C, Marshall MV, Fife CE, Sevick-Muraca EM (2009) Lymphatic imaging in humans with near-infrared fluorescence. Curr Opin Biotechnol 20(1):74–82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Zawieja DC (2009) Contractile physiology of lymphatics. Lymphat Res Biol 7(2):87–96

    Article  PubMed  PubMed Central  Google Scholar 

  193. Mallick A, Bodenham AR (2003) Disorders of the lymph circulation: their relevance to anaesthesia and intensive care. Br J Anaesth 91:265–272

    Article  PubMed  CAS  Google Scholar 

  194. Thompson MD, Carr AP (2002) Hyponatremia and hyperkalemia associated with chylous pleural and peritoneal effusion in a cat. Can Vet J 43(8):610–613

    PubMed  PubMed Central  Google Scholar 

  195. Steven BR, Carey S (2015) Nutritional management in patients with chyle leakage: a systematic review. Eur J Clin Nutr 69:776–780

    Article  PubMed  CAS  Google Scholar 

  196. Borisov AV (2005) Functional anatomy of lymphangion. Morfologiia 128(6):18–27

    PubMed  CAS  Google Scholar 

  197. Quick CM, Venugopal AM, Gashev AA, Zawieja DC, Stewart RH (2007) Intrinsic pump-conduit behavior of lymphangions. Am J Physiol—Regul, Integr Comp Physiol 292(4):R1510–R1518

    Article  PubMed  CAS  Google Scholar 

  198. Brace RA, Andres RL (1991) Left thoracic duct lymph flow responses to angiotensin II or atrial natriuretic factor infusion in the ovine fetus. Am J Obstet Gynecol 165(6 Pt 1):1607–1613

    Article  PubMed  CAS  Google Scholar 

  199. Lachance P-A, Hazen A, Sevick-Muraca EM (2013) Lymphatic vascular response to acute inflammation. PLoS ONE 8(9):e76078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Dunworth WP, Fritz-Six KL, Caron KM (2008) Adrenomedullin stabilizes the lymphatic endothelial barrier in vitro and in vivo. Peptides 29(12):2243–2249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Schmid-Schönbein GW (1990) Microlymphatics and lymph flow. Physiol Rev 70(4):987–1028

    Article  PubMed  Google Scholar 

  202. Reddy NP (1986) Lymph circulation: physiology, pharmacology, and biomechanics. Crit Rev Biomed Eng 14(1):45–91

    PubMed  CAS  Google Scholar 

  203. Browning KN, Travagli RA (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4(4):1339–1368

    Article  PubMed  PubMed Central  Google Scholar 

  204. Phillips RJ, Powley TL (2007) Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 136(1–2):1–19

    Article  PubMed  PubMed Central  Google Scholar 

  205. Straub RH, Wiest R, Strauch UG, Härle P, Schölmerich J (2006) The role of the sympathetic nervous system in intestinal inflammation. Gut 55(11):1640–1649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Furness JB, Callaghan BP, Rivera LR, Cho HJ (2014) The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 817:39–71

    Article  PubMed  Google Scholar 

  207. Margolis KG, Gershon MD, Bogunovic M (2016) Cellular organization of neuroimmune interactions in the gastrointestinal tract. Trends Immunol 37(7):487–501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Pereverzev VA, Welcome MO, Melnichuk VI, Razvodovsky YE, Pereverzeva EV (2016) Fasting normoglycemia: classification, parameters, maintenance mechanisms. Healthcare 4:18–27

    Article  Google Scholar 

  209. Duke GE (1986) Alimentary canal: secretion and digestion, special digestive functions, and absorption. In: Sturkie PD (ed) Avian physiology. Springer, New York

    Google Scholar 

  210. Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3(2):741–783

    PubMed  PubMed Central  Google Scholar 

  211. Furness JB, Cottrell JJ, Bravo DM (2015) Comparative gut physiology symposium: comparative physiology of digestion. J Anim Sci 93(2):485–491

    Article  PubMed  CAS  Google Scholar 

  212. Egorov VI, Schastlivtsev IV, Prut EV, Baranov AO, Turusov RA (2002) Mechanical properties of the human gastrointestinal tract. J Biomech 35(10):1417–1425

    Article  PubMed  Google Scholar 

  213. Kauffman GL Jr (1981) Gastric mucus and bicarbonate secretion in relation to mucosal protection. J Clin Gastroenterol 3(2):45–50

    PubMed  Google Scholar 

  214. Agarwal R, Afzalpurkar R, Fordtran JS (1994) Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology 107(2):548–571

    Article  PubMed  CAS  Google Scholar 

  215. O’Connor A, O’Moráin C (2014) Digestive function of the stomach. Dig Dis 32(3):186–191

    Article  PubMed  Google Scholar 

  216. Chu S, Schubert ML (2012) Gastric secretion. Curr Opin Gastroenterol 28(6):587–593

    Article  PubMed  CAS  Google Scholar 

  217. Schubert ML (2014) Gastric secretion. Curr Opin Gastroenterol 30(6):578–582

    Article  PubMed  CAS  Google Scholar 

  218. Schubert ML (2009) Gastric exocrine and endocrine secretion. Curr Opin Gastroenterol 25(6):529–536

    Article  PubMed  CAS  Google Scholar 

  219. Ménard D (2004) Functional development of the human gastrointestinal tract: hormone-and growth factor-mediated regulatory mechanisms. Can J Gastroenterol 18(1):39–44

    Article  PubMed  Google Scholar 

  220. Eckmann L, Stenson WF, Savidge TC, Lowe DC, Barrett KE, Fierer J et al (1997) Role of intestinal epithelial cells in the host secretory response to infection by invasive bacteria. Bacterial entry induces epithelial prostaglandin h synthase-2 expression and prostaglandin E2 and F2alpha production. J Clin Invest 100(2):296–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Bronner F (2003) Mechanisms of intestinal calcium absorption. J Cell Biochem 88(2):387–393

    Article  PubMed  CAS  Google Scholar 

  222. Ward JB, Keely SJ, Keely SJ (2014) Oxygen in the regulation of intestinal epithelial transport. J Physiol 592(12):2473–2489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Pizzorno L (2016) Bariatric surgery: bad to the bone, part 1. Integr Med (Encinitas) 15(1):48–54

    Google Scholar 

  224. Terra X, Auguet T, Guiu-Jurado E, Berlanga A, Orellana-Gavaldà JM, Hernández M et al (2013) Long-term changes in leptin, chemerin and ghrelin levels following different bariatric surgery procedures: Roux-en-Y gastric bypass and sleeve gastrectomy. Obes Surg 23(11):1790–1798

    Article  PubMed  Google Scholar 

  225. Ghishan FK, Kiela PR (2014) Epithelial transport in inflammatory bowel diseases. Inflamm Bowel Dis 20(6):1099–1109

    PubMed  Google Scholar 

  226. Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111(7):931–943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Kiel JW, Shepherd AP (1990) Gastrointestinal blood flow. In: Shepherd AP, Åke Öberg P (eds) Laser-doppler blood flowmetry. Developments in cardiovascular medicine. Springer Science + Business Media, New York

    Google Scholar 

  228. Kiela PR, Ghishan FK (2009) Ion transport in the intestine. Curr Opin Gastroenterol 25(2):87–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Marks J, Debnam ES, Unwin RJ (2013) The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens 22(4):481–487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Reining SC, Liesegang A, Betz H, Biber J, Murer H, Hernando N (2010) Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Pflugers Arch 460(1):207–217

    Article  PubMed  CAS  Google Scholar 

  231. Laforenza U (2012) Water channel proteins in the gastrointestinal tract. Mol Aspects Med 33(5–6):642–650

    Article  PubMed  CAS  Google Scholar 

  232. Zhu C, Chen Z, Jiang Z (2016) Expression, distribution and role of aquaporin water channels in human and animal stomach and intestines. Int J Mol Sci 17(9). pii:E1399

    Article  PubMed Central  CAS  Google Scholar 

  233. Page DA, Carlson GP (1994) The role of the intestinal tract in the elimination of carbon tetrachloride. Toxicol Appl Pharmacol 124(2):268–274

    Article  PubMed  CAS  Google Scholar 

  234. Arimori K, Nakano M (1998) Drug exsorption from blood into the gastrointestinal tract. Pharm Res 15(3):371–376

    Article  PubMed  CAS  Google Scholar 

  235. Hollander D, Dadufalza VD (1983) Intestinal exsorption of oleic acid: influence of aging, bile, pH and ethanol. J Nutr 113(3):511–518

    Article  PubMed  CAS  Google Scholar 

  236. Leu BL, Huang J (1995) Inhibition of intestinal P-glycoprotein and effects on etoposide absorption. Cancer Chemother Pharmacol 35(5):432–436

    Article  PubMed  CAS  Google Scholar 

  237. Carr RA, Pasutto FM, Foster RT (1996) Renal, biliary and intestinal clearance of sotalol enantiomers in rat model: evidence of intestinal exsorption. Biopharm Drug Dispos 17(8):725–735

    Article  PubMed  CAS  Google Scholar 

  238. Sarker SA, Gyr K (1992) Non-immunological defence mechanisms of the gut. Gut 33(7):987–993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Dommett R, Zilbauer M, George JT, Bajaj-Elliott M (2005) Innate immune defence in the human gastrointestinal tract. Mol Immunol 42(8):903–912

    Article  PubMed  CAS  Google Scholar 

  240. Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol 15(1):57–62

    Article  PubMed  CAS  Google Scholar 

  241. Janssen AW, Kersten S (2015) The role of the gut microbiota in metabolic health. FASEB J 29(8):3111–3123

    Article  PubMed  CAS  Google Scholar 

  242. Fukuda S, Ohno H (2014) Gut microbiome and metabolic diseases. Semin Immunopathol 36(1):103–114

    Article  PubMed  CAS  Google Scholar 

  243. Rubino F, R’bibo SL, del Genio F, Mazumdar M, McGraw TE (2010) Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat Rev Endocrinol 6(2):102–109

    Article  PubMed  PubMed Central  Google Scholar 

  244. Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59(4):617–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587(Pt 17):4153–4158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Krebs NF (2000) Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr 130(5S):1374S–1377S

    Article  PubMed  CAS  Google Scholar 

  247. Klevay LM, Bogden JD, Aladjem M, Sandstead HH, Kemp FW, Li W et al (2007) Renal and gastrointestinal potassium excretion in humans: new insight based on new data and review and analysis of published studies. J Am Coll Nutr 26(2):103–110

    Article  PubMed  CAS  Google Scholar 

  248. Cheng LK, O’Grady G, Du P, Egbuji JU, Windsor JA, Pullan AJ (2010) Gastrointestinal system. Wiley Interdiscip Rev Syst Biol Med 2(1):65–79

    Article  PubMed  PubMed Central  Google Scholar 

  249. Gunawardene AR, Corfe BM, Staton CA (2011) Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 92(4):219–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Arnold R (2005) Endocrine tumours of the gastrointestinal tract. Introduction: definition, historical aspects, classification, staging, prognosis and therapeutic options. Best Pract Res Clin Gastroenterol 19(4):491–505

    Article  PubMed  CAS  Google Scholar 

  251. Maggs D, MacDonald I, Nauck MA (2008) Glucose homeostasis and the gastrointestinal tract: insights into the treatment of diabetes. Diabetes Obes Metab 10(1):18–33

    PubMed  CAS  Google Scholar 

  252. Ewart WR (1985) Sensation in the gastrointestinal tract. Comp Biochem Physiol, A: Comp Physiol 82(3):489–493

    Article  CAS  Google Scholar 

  253. Yu X, Yu M, Liu Y, Yu S (2016) TRP channel functions in the gastrointestinal tract. Semin Immunopathol 38(3):385–396

    Article  PubMed  CAS  Google Scholar 

  254. Blackshaw LA, Brookes SJ, Grundy D, Schemann M (2007) Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 19(1):1–19

    Article  PubMed  CAS  Google Scholar 

  255. Brock C, Arendt-Nielsen L, Wilder-Smith O, Drewes AM (2009) Sensory testing of the human gastrointestinal tract. World J Gastroenterol 15(2):151–159

    Article  PubMed  PubMed Central  Google Scholar 

  256. Rayner CK, Samsom M, Jones KL, Horowitz M (2001) Relationships of upper gastrointestinal motor and sensory function with glycemic control. Diabetes Care 24(2):371–381

    Article  PubMed  CAS  Google Scholar 

  257. Yi C-X, Tschöp MH (2012) Brain–gut–adipose-tissue communication pathways at a glance. Dis Model Mech 5(5):583–587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

    PubMed  PubMed Central  Google Scholar 

  259. van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Physiol 71:241–260

    Article  CAS  Google Scholar 

  260. Mayhew TM (1990) Striated brush border of intestinal absorptive epithelial cells: stereological studies on microvillous morphology in different adaptive states. J Electron Microsc Tech 16(1):45–55

    Article  PubMed  CAS  Google Scholar 

  261. Lan M, Kojima T, Murata M, Osanai M, Takano K, Chiba H, Sawada N (2006) Phosphorylation of ezrin enhances microvillus length via a p38 MAP-kinase pathway in an immortalized mouse hepatic cell line. Exp Cell Res 312(2):111–120

    Article  PubMed  CAS  Google Scholar 

  262. Venugopal AM, Stewart RH, Laine GA, Dongaonkar RM, Quick CM (2007) Lymphangion coordination minimally affects mean flow in lymphatic vessels. Am J Physiol Heart Circ Physiol 293(2):H1183–H1189

    Article  PubMed  CAS  Google Scholar 

  263. Dudek RW (2010) High-yield systems gastrointestinal tract. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  264. Kuo B, Urma D (2006) Esophagus—anatomy and development. GI Motil Online. https://doi.org/10.1038/gimo6

    Article  Google Scholar 

  265. Gahutu JB, Wane J (2006) Reference values for serum protein and electrolyte study from Rwanda. East Afr Med J 83(2):64–67

    Article  PubMed  CAS  Google Scholar 

  266. Lolekha PH, Vanavanan S, Teerakarnjana N, Chaichanajarernkul U (2001) Reference ranges of electrolyte and anion gap on the beckman E4A, beckman synchron CX5, nova CRT, and nova stat profile ultra. Clin Chim Acta 307(1–2):87–93

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menizibeya Osain Welcome MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Welcome, M.O. (2018). Structural and Functional Organization of the Gastrointestinal Tract. In: Gastrointestinal Physiology. Springer, Cham. https://doi.org/10.1007/978-3-319-91056-7_2

Download citation

Publish with us

Policies and ethics