Skip to main content

Philosophy of Engineering and the Quest for a Novel Notion of Experimentation

  • Chapter
  • First Online:
The Future of Engineering

Part of the book series: Philosophy of Engineering and Technology ((POET,volume 31))

Abstract

Epistemological issues in engineering knowledge have traditionally played a central role in the debate over the assessment of the philosophy of engineering as a disciplinary field. However, only few works have explicitly focused on experimental methodology and attempted to systematically compare the traditional experimental method of the natural sciences to the kind of experimentation carried out in engineering research. In this paper, by investigating some areas of computer engineering, and in particular autonomous robotics, I claim that traditional experimentation cannot be always applied as such to computer engineering and that the notion of explorative experiment is a good candidate to be considered. Explorative experiments are a form of investigation of novel ideas or techniques without the typical constraints of rigorous experimental methodologies. They are driven by the desire of investigating the realm of possibilities pertaining to the functioning of a technical artefact and its interaction with the environment in the absence of a proper theory or theoretical background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amigoni, F., Schiaffonati, V., & Verdicchio, M. (2014). Good experimental methodologies for autonomous robotics: From theory to practice. In F. Amigoni & V. Schiaffonati (Eds.), Methods and experimental techniques in computer engineering, Springer Briefs in Applied Sciences and Technology (pp. 37–53). Cham: Springer.

    Chapter  Google Scholar 

  • Ansell, C. (2012). What is a “democratic experiment”? Contemporary Pragmatism, 9(2), 159–180.

    Article  Google Scholar 

  • Barni, M., Perez-Gonzalez, F., Comesana, P., & Bartoli, G. (2007). Putting reproducible signal processing into practice: A case study in watermarking. In Proceedings of IEEE international conference on acoustics speech and signal processing.

    Google Scholar 

  • Bensaude-Vincent, B., Loeve, S., Nordmann, A., & Schwarz, A. (2011). Matters of interest. The object of research in science and technoscience. Journal of General Philosophy of Science, 43, 365–383.

    Article  Google Scholar 

  • Bonsignorio, F., & del Pobil, A. (2015). Special issue on replicable and measurable robotics research. IEEE Robotics and Automation Magazine, 22(3), 32–154.

    Article  Google Scholar 

  • Bonsignorio, F., Hallam, J., & del Pobil, A. (2015). Special interest group on good experimental methodologies. http://www.heronrobots.com/EuronGEMSig/gem-sig-events. Accessed Sept 2016.

  • Boon, M. (2012). Scientific concepts in the engineering sciences: Epistemic tools for creating and intervening with phenomena. In U. Feest & F. Steinle (Eds.), Scientific concepts and investigative practice (pp. 219–243). Berlin: De Gruyter.

    Google Scholar 

  • Burian, R. M. (1997). Exploratory experimentation and the role of histochemical techniques in the work of Jean Brachet, 1938–1952. History and Philosophy of the Life Sciences, 19, 27–45.

    Google Scholar 

  • Burian, R. M. (2007). On MicroRNA and the need for exploratory experimentation in post-genomic molecular biology. History and Philosophy of Life Sciences, 29(3), 285–311.

    Google Scholar 

  • Chu, V., McMahon, I., Riano, L., McDonald, C., He, Q., Martinez Perez-Tejada, J., Arrigo, M., Fitter, N., Nappo, J., Darrell, T., & Kuchenbecker, U. (2013). Using robotic exploratory procedures to learn the meaning of haptic adjectives. Proceedings of ICRA, 3048–3055.

    Google Scholar 

  • Daniel, C., Neumann, G., & Peters, J. (2012). Learning concurrent motor skills in versatile solution spaces. Proceedings of IROS, 3591–3597.

    Google Scholar 

  • Deisenroth, M., Englert, P., Peters, J., & Fox, D. (2014). Multi-task policy search for robotics. Proceedings of ICRA, 3876–3881.

    Google Scholar 

  • Denning, P. J. (1980). What is experimental computer science. Communications of the ACM, 23(10), 543–544.

    Article  Google Scholar 

  • Denning, P. J. (2005). Is computer science science? Communications of the ACM, 48(4), 27–31.

    Article  Google Scholar 

  • Denning, P. J., & Freeman, P. (2009). Computing’s paradigm. Communications of the ACM, 52(12), 28–30.

    Article  Google Scholar 

  • Fasola, J., & Mataric, M. (2013). Using semantic fields to model dynamic spatial relations in a robot architecture for natural language instruction of service robots. Proceedings of IROS, 143–150.

    Google Scholar 

  • Feitelson, D. G. (2006). Experimental computer science: The need for a cultural change. Unpublished manuscript. http://www.cs.huji.ac.il/~feit/papers/exp05.pdf. Accessed Oct 2016.

  • Feldman, J. A., & Sutherland, W. R. (1979). Rejuvenating experimental computer science. Communications of the ACM, 22(9), 497–502.

    Article  Google Scholar 

  • Franklin, L. R. (2005). Exploratory experiments. Philosophy of Science, 72, 888–899.

    Article  Google Scholar 

  • Franssen, M., Vermaas, P. E., Kroes, P., & Meijers, A. W. M. (2016). Philosophy of technology after the empirical turn. Cham: Springer.

    Book  Google Scholar 

  • Freeman, P. (2008). Back to experimentation. Communications of the ACM, 51(1), 21–22.

    Article  Google Scholar 

  • Gemici, M., & Saxena, A. (2014). Learning haptic representation for manipulating deformable food objects. Proceedings of IROS, 638–645.

    Google Scholar 

  • Grollman, D., & Billard, A. (2011). Donut as I do: Learning from failed demonstrations. Proceedings of ICRA, 3804–3809.

    Google Scholar 

  • Hacking, I. (1983). Representing and intervening. New York: Cambridge University Press.

    Book  Google Scholar 

  • Hansson, S. O. (2016). Experiments: Why and how? Science and Engineering Ethics, 22(3), 613–632.

    Article  Google Scholar 

  • Juristo, N., & Gomez, O. (2012). Replication of software engineering experiments. In B. Mayer & M. Nordio (Eds.), Empirical software engineering and verication (pp. 60–88). Berlin: Springer.

    Chapter  Google Scholar 

  • Juristo, N., & Moreno, A. M. (2011). Basics of software engineering experimentation. Dordrecht: Kluwer.

    Google Scholar 

  • Kit, E. (1999). Software testing in the real world. Harlow: Addison-Wesley.

    Google Scholar 

  • Kroes, P. (2016). Experiments on socio-technical systems: The problem of control. Science and Engineering Ethics, 22(3), 633–645.

    Article  Google Scholar 

  • McCracken, D. D., Denning, P. J., & Brandin, D. H. (1979). An ACM executive committee position on the crisis in experimental computer science. Communications of the ACM, 22(9), 503–504.

    Article  Google Scholar 

  • Michelfelder, D. P., McCarthy, N., & Goldberg, D. E. (Eds.). (2013). Philosophy and engineering. Reflections on practice, principles, and process. Dordrecht: Springer.

    Google Scholar 

  • Morrison, C. T., & Snodgrass, R. T. (2011). Computer science can use more science. Communications of the ACM, 54(6), 36–38.

    Article  Google Scholar 

  • Newell, A., & Simon, H. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126.

    Article  Google Scholar 

  • Nordmann, A. (2010). Science in the context of technology. In M. Carrier & A. Nordmann (Eds.), Science in the context of application. Boston studies in the philosophy of science (pp. 467–482). Dordrecht: Springer.

    Google Scholar 

  • Nordmann, A. (2016). Changing perspectives: The technological turn in the philosophies of science and technology. In M. Frassen, P. E. Vermaas, P. Kroes, & A. W. Meijers (Eds.), Philosophy of technology after the empirical turn (pp. 107–125). Cham: Springer.

    Google Scholar 

  • Radder, H. (2009). The philosophy of scientific experimentation: A review. Automated Experimentation, 1(2), 1–8. https://doi.org/10.1186/1759-4499-1-2.

    Article  Google Scholar 

  • Schiaffonati, V. (2016). Stretching the traditional notion of experiment in computing: Explorative experiments. Science and Engineering Ethics, 22(3), 647–665.

    Article  Google Scholar 

  • Schwabe, G., & Krcmar, H. (2000). Piloting socio-technical innovation. In Proceedings of the European conference on information systems, Paper 27.

    Google Scholar 

  • Small, A. W. (1921). The future of sociology. Publications of the American Sociological Society, 15, 174–193.

    Google Scholar 

  • Snir, M. (2011). Computer and information science and engineering: One discipline, many specialties. Communications of the ACM, 54(3), 38–43.

    Article  Google Scholar 

  • Staples, M. (2014). Critical rationalism and engineering: Ontology. Synthese, 191(10), 2255–2279.

    Article  Google Scholar 

  • Staples, M. (2015). Critical rationalism and engineering: Methodology. Synthese, 192(1), 337–362.

    Article  Google Scholar 

  • Steinle, F. (1997). Entering new fields: Exploratory uses of experimentation. Philosophy of Science, 64, S65–S67.

    Article  Google Scholar 

  • Tedre, M. (2011). Computing as a science: A survey of computing viewpoints. Minds and Machines, 21, 361–387.

    Article  Google Scholar 

  • Tedre, M. (2015). The science of computing. Boca Raton: CRC Press/Taylor & Francis Group.

    Google Scholar 

  • Thobbi, A., Gu, Y., & Sheng, W. (2011). Using human motion estimation for human-robot cooperative manipulation. Proceedings of IROS, 2873–2878.

    Google Scholar 

  • Tichy, W. F. (1998). Should computer scientists experiment more? Computer, 31(5), 32–40.

    Article  Google Scholar 

  • van de Poel, I. (2010). Philosophy and engineering: Setting the stage. In I. van de Poel & D. E. Goldberg (Eds.), Philosophy and engineering: An emerging agenda (pp. 1–11). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Van de Poel, I. (forthcoming). Society as a laboratory to experiment with new technologies. In E. Stokes, D. Bowman, & A. Rip (Eds.), Embedding and governing new technologies. Singapore: Pan Stanford Publishing.

    Google Scholar 

  • van de Poel, I., & Goldberg, D. E. (Eds.). (2010). Philosophy and engineering: An emerging agenda. Dordrecht: Springer.

    Google Scholar 

  • Vermaas, P., Kroes, P., van de Poel, I., Franssen, M., & Houkes, W. (2011). A philosophy of technology. From technical artefacts to sociotechnical systems. San Rafael: Morgan & Claypool.

    Google Scholar 

  • Vincenti, W. G. (1990). What engineers know and how they know it. Baltimore/London: John Hopkins University Press.

    Google Scholar 

  • Waters, C. K. (2007). The nature and context of exploratory experimentation. History and Philosophy of the Life Sciences, 19, 275–284.

    Google Scholar 

  • Zelkowitz, M. V., & Wallace, D. R. (1997). Experimental validation in software engineering. Information and Software Technology, 39(11), 735–743.

    Article  Google Scholar 

  • Zelkowitz, M. V., & Wallace, D. R. (1998). Experimental models for validating technology. Computer, 31(5), 23–31.

    Article  Google Scholar 

  • Zwart, S. D., & de Vries, M. J. (2016). Methodological classification of innovative engineering projects. In M. Franssen, P. E. Vermaas, P. Kroes, & A. W. M. Meijers (Eds.), Philosophy of technology after the empirical turn (pp. 219–248). Cham: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Schiaffonati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schiaffonati, V. (2018). Philosophy of Engineering and the Quest for a Novel Notion of Experimentation. In: Fritzsche, A., Oks, S. (eds) The Future of Engineering. Philosophy of Engineering and Technology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-91029-1_6

Download citation

Publish with us

Policies and ethics