Skip to main content

Shock Compression Spectroscopy Under a Microscope

  • Conference paper
  • First Online:
31st International Symposium on Shock Waves 1 (ISSW 2017)

Included in the following conference series:

Abstract

In this paper, I will describe recent progress in developing a tabletop apparatus for shock compression spectroscopy based on laser-driven flyer plates synchronized with high-speed lasers and optical and infrared detectors. The primary focus of the paper is technique development, although examples of applications are also provided. The flyer plates can be launched up to 6 km/s, but they are tiny, typically 0.5 mm in diameter and 50 μm thick, so the main limitations of this technique are the short duration of the shock, typically <15 ns, and the small sample size needed. The flyer launch and impact, monitored by photon Doppler velocimetry (PDV) and ultrafast strobe photography, show the flyers make exceptionally reproducible impacts with minimal tilt. Using fabricated shock target arrays containing 50–200 individual samples, hundreds of experiments can be conducted every day. Examples are presented involving time-resolved spectroscopy of quantum dot photoemission to measure compressional strain at high speed, time-resolved optical pyrometry to study shock initiation of plastic-bonded explosives and liquid explosives, and ultrafast spectroscopy to measure molecular photophysics under extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.E. Brown, W.L. Shaw, X. Zheng, D.D. Dlott, Rev. Sci. Instrum. 83, 103901 (2012)

    Article  Google Scholar 

  2. D.D. Dlott, AIP Conf. Proc. 1793, 020001 (2017)

    Article  Google Scholar 

  3. A.A. Banishev, W.L. Shaw, W.P. Bassett, D.D. Dlott, J. Dyn. Behav. Mater. 2, 194–206 (2016)

    Article  Google Scholar 

  4. A.D. Curtis, A.A. Banishev, W.L. Shaw, D.D. Dlott, Rev. Sci. Instrum. 85, 043908 (2014)

    Article  Google Scholar 

  5. W.M. Trott, R.E. Setchell, A.V. Farnsworth Jr., AIP Conf. Proc. 620, 1347–1350 (2002)

    Article  Google Scholar 

  6. J. Weng, X.X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, C. Liu, Rev. Sci. Instrum. 79, 113101 (2008)

    Article  Google Scholar 

  7. S.P. Marsh, LASL Shock Hugoniot Data (University of California Press, Berkeley, 1980)

    Google Scholar 

  8. Z. Kang, A.A. Banishev, G.W. Lee, D.A. Scripka, J. Breidenich, P. Xiao, J. Christensen, M. Zhou, C.J. Summers, D.D. Dlott, N.N. Thadhani, J. Appl. Phys. 120, 043107 (2016)

    Article  Google Scholar 

  9. P. Xiao, Z. Kang, A.A. Banishev, J. Breidenich, D.A. Scripka, J.M. Christensen, C.J. Summers, D.D. Dlott, N.N. Thadhani, M. Zhou, Appl. Phys. Lett. 108, 011908 (2016)

    Article  Google Scholar 

  10. K.E. Brown, Y. Fu, W.L. Shaw, D.D. Dlott, J. Appl. Phys. 112, 103508 (2012)

    Article  Google Scholar 

  11. A.A. Banishev, D.D. Dlott, J. Appl. Phys. 115, 203515 (2014)

    Article  Google Scholar 

  12. A.A. Banishev, W.L. Shaw, D.D. Dlott, Appl. Phys. Lett. 104, 101914 (2014)

    Article  Google Scholar 

  13. W.P. Bassett, D.D. Dlott, Rev. Sci. Instrum. 87, 103107 (2016)

    Article  Google Scholar 

  14. W.P. Bassett, D.D. Dlott, J. Appl. Phys. 119, 225103 (2016)

    Article  Google Scholar 

  15. W.P. Bassett, D.D. Dlott, Appl. Phys. Lett. 109, 091903 (2016)

    Article  Google Scholar 

  16. J. Köhler, R. Meyer, Explosives, 4th edn. (VCH Publishers, New York, 1993)

    Google Scholar 

  17. Y.A. Gruzdkov, Y.M. Gupta, J. Phys. Chem. A 102, 2322–2331 (1998)

    Article  Google Scholar 

  18. J.B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970)

    Google Scholar 

  19. H.G. Drickamer, Annu. Rev. Phys. Chem. 33, 25–47 (1982)

    Article  Google Scholar 

  20. W.-l. Liu, W.P. Bassett, J.M. Christensen, D.D. Dlott, J. Phys. Chem. A 119, 10910–10916 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The research described in this study is based on work supported by the US Army Research Office under awards W911NF-13-1-0217 and W911NF-16-1-0406, the US Air Force Office of Scientific Research under awards FA9550-14-1-0142, and FA9550-16-1-0042, the Defense Threat Reduction Agency under award HDTRA1-12-1-0011, the Office of Naval Research under award N00014-16-1-2272, and the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center, under grant number DE-NA20002006. I thank the many graduate students and postdoctoral researchers who contributed to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana D. Dlott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dlott, D.D. (2019). Shock Compression Spectroscopy Under a Microscope. In: Sasoh, A., Aoki, T., Katayama, M. (eds) 31st International Symposium on Shock Waves 1. ISSW 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-91020-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91020-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91019-2

  • Online ISBN: 978-3-319-91020-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics