Skip to main content

Large-Scale Computation of Direct Initiation of Cylindrical Detonations

  • Conference paper
  • First Online:

Abstract

We investigate the direct initiation of cylindrical detonations in free space by performing large-scale computations on a supercomputer. The two-dimensional (2D) compressible reactive Euler equations with a one-step chemical reaction model are solved by a well-validated upwind CE/SE scheme using up to 1.6 billion mesh points. Numerical results imply that one-dimensional (1D) approaches can only interpret the direct initiation mechanism of stable detonations. Inherent multi-dimensional instabilities have a significant influence on the direct initiation of unstable detonations. On one hand, multi-dimensional instabilities make the detonation more unstable and increase the risk of failure of the detonation. On the other hand, the collision of transverse waves generated from multi-dimensional instabilities leads to the initiation of local overdriven detonations that can enhance the overall self-sustainability of the global process. The competition between these two effects is an important mechanism to interpret the direct initiation of multi-dimensional detonations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.H.S. Lee, Annu. Rev. Fluid Mech. 16, 311 (1984)

    Article  Google Scholar 

  2. Y.B. Zeldovich, S.M. Kogarko, N.N. Simonov, Sov. Phys. Tech. Phys. 1, 1689 (1956)

    Google Scholar 

  3. L.T. He, P. Clavin, J. Fluid Mech. 277, 227 (1994)

    Article  MathSciNet  Google Scholar 

  4. C.A. Eckett, J.J. Quirk, J.E. Shepherd, J. Fluid Mech. 421, 147 (2000)

    Article  MathSciNet  Google Scholar 

  5. H. Shen, C.-Y. Wen, D.L. Zhang, J. Comput. Phys. 288, 101 (2015)

    Article  MathSciNet  Google Scholar 

  6. H. Shen, C.-Y. Wen, J. Comput. Phys. 305, 775 (2016)

    Article  MathSciNet  Google Scholar 

  7. H. Shen, C.-Y. Wen, M. Parsani, C.-W. Shu, J. Comput. Phys. 330, 668 (2017)

    Article  MathSciNet  Google Scholar 

  8. W. Fickett, W.C. Davis, Detonation (University of California Press, Berkeley, 1979)

    Google Scholar 

  9. H.I. Lee, D.S. Stewart, J. Fluid Mech. 216, 103 (1990)

    Article  Google Scholar 

  10. K. Mazaheri, PhD thesis, McGill University, Montreal, Canada, 1997

    Google Scholar 

  11. H. Shen, M. Parsani, J. Fluid Mech. 813, R4 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

The authors are thankful for the computing resources of the Supercomputing Laboratory and the Extreme Computing Research Center at King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, H., Parsani, M. (2019). Large-Scale Computation of Direct Initiation of Cylindrical Detonations. In: Sasoh, A., Aoki, T., Katayama, M. (eds) 31st International Symposium on Shock Waves 2. ISSW 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-91017-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91017-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91016-1

  • Online ISBN: 978-3-319-91017-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics