Skip to main content

An Electrodynamic Aerobraking Experiment in a Rarefied Arc-Heated Flow

  • Conference paper
  • First Online:
31st International Symposium on Shock Waves 2 (ISSW 2017)

Included in the following conference series:

  • 1102 Accesses

Abstract

Our previous numerical study (Katsurayama et al. AIAA Paper 2008-4016) has predicted that an insulating boundary in a flow is necessary to activate electrodynamic braking in a rarefied flow: the insulating boundary can prevent the Hall effect from dissipating the current which is necessary for the electrodynamic braking. In order to validate this numerical prediction, the present study measures the total drag on a test model in a rarefied arc flow whose insulating boundary (that is an arc plume boundary) location is variable and compares the measured electrodynamic increases of the total drag with the computed values. As a result, the measured and computed total drags increase by applying the magnetic field, but contrary to the computational prediction, the measured electrodynamic increase of the total drag is insensitive to the insulating boundary location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.R. Kantrowitz, Proc. Conf. High Speed Aeronaut., 335–339 (1955)

    Google Scholar 

  2. R.W. Ziemer, W.B. Bush, Phys. Rev. Lett. 1, 58 (1958)

    Article  Google Scholar 

  3. R.W. Ziemer, Am. Rocket Soc. J. 29, 642 (1959)

    Google Scholar 

  4. R. Nowak, M.C. Yuen, AIAA J. 11, 1463 (1973)

    Article  Google Scholar 

  5. R.J. Nowak et al., J. Spacecr. Rockets 4, 1538 (1967)

    Article  Google Scholar 

  6. J. Poggie, D.V. Gaitonde, Phys. Fluids 14, 1720 (2002)

    Article  Google Scholar 

  7. H. Otsu et al., AIAA J. 48, 2177 (2010)

    Article  Google Scholar 

  8. T. Fujino et al., J. Spacecr. Rocket. 43, 63 (2006)

    Article  Google Scholar 

  9. Y. Takizawa et al., Phys. Fluids 18, 117105 (2006)

    Article  Google Scholar 

  10. A. Matsuda et al., Phys. Fluids 18, 027102 (2008)

    Article  Google Scholar 

  11. M. Kawamura et al., J. Spacecr. Rocket. 46, 1171 (2009)

    Article  Google Scholar 

  12. H. Katsurayama et al., AIAA Paper 2008-4016 (2008)

    Google Scholar 

  13. H. Katsurayama, T. Abe, J. Appl. Phys. 113, 053304 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Katsurayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katsurayama, H., Fukuda, N., Toyodome, T., Katoh, Y., Tomita, K., Matsui, M. (2019). An Electrodynamic Aerobraking Experiment in a Rarefied Arc-Heated Flow. In: Sasoh, A., Aoki, T., Katayama, M. (eds) 31st International Symposium on Shock Waves 2. ISSW 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-91017-8_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91017-8_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91016-1

  • Online ISBN: 978-3-319-91017-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics