On the Relation Between the Shock Wave Thickness in Biomaterials and the Threshold for Blast-Induced Neurotrauma

  • M. I. P. RadulescuEmail author
Conference paper


It is found that the threshold for blast-induced neurotrauma documented from previous experiments in animals and cell cultures is approximately given by the criterion that the shock thickness be comparable to the characteristic dimension of a neuron cell (approximately 20 μm). The coincidence of the shock thickness with the characteristic dimension of the neuron cells supports the view that cell damage may be related to the localized mechanical deformation of cell components and shear for sufficiently strong and thin shocks. Our estimate of the shock wave thickness in biological material is based on the weak shock model of Thompson extended to materials whose compressibility can be modeled using the stiffened gas equation of state. Simulations of the transient relaxation of step function shocks into the steady shock profiles provided the time scale for the shock thickening when an impact-generated shock or much thinner air shock enters the biomaterial modeled. We find that air shocks will always be more damaging than those propagating through water at the same pressure level, consistent with experiment.


  1. 1.
    I. Cernak, L.J. Noble-Haeusslein, J. Cereb. Blood Flow. Metab. 30, 255 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Margulies, R. Hicks, J. Neurotrauma 26, 925 (2009)CrossRefGoogle Scholar
  3. 3.
    H.G. Belanger et al., J. Int. Neuropsychol. Soc. 15, 1 (2009)CrossRefGoogle Scholar
  4. 4.
    D.R. Richmond et al., Air-Blast Studies with Eight Species of Mammals, Lovelace Foundation for Medical Education and Research (Albuquerque, New Mexico, 1966)Google Scholar
  5. 5.
    E.G. Damon et al., Aerosp. Med. 39, 1039 (1968)Google Scholar
  6. 6.
    V. Bogo et al., The Effects of Airblast on Discriminated Avoidance Behavior in Rhesus Monkeys (Defense Nuclear Agency, Washington, DC, 1971)Google Scholar
  7. 7.
    J. Savic et al., Vojnosanit. Pregl. 48, 499 (1991)Google Scholar
  8. 8.
    P. Arun et al., Neuroreport 23, 342 (2012)CrossRefGoogle Scholar
  9. 9.
    P. Arun et al., Neuroreport 22, 379 (2011)CrossRefGoogle Scholar
  10. 10.
    G.B. Effgen et al., Front. Neurol. 3(23), 1–12 (2012)Google Scholar
  11. 11.
    A.P. Miller et al., Front. Neurol. 6(20), 1–16 (2015)Google Scholar
  12. 12.
    G.B. Effgen et al., J. Neurotrauma 31, 1202 (2014)CrossRefGoogle Scholar
  13. 13.
    Y.C. Chen et al., J. Neurotrauma 26, 861 (2009)CrossRefGoogle Scholar
  14. 14.
    M.J. Kane et al., Neurosci. Lett. 522, 47 (2012)CrossRefGoogle Scholar
  15. 15.
    S.R. Shepard et al., J. Surg. Res. 51, 417 (1991)CrossRefGoogle Scholar
  16. 16.
    L.Y. Leung et al., Mol. Cell. Biomech. 5, 155 (2008)Google Scholar
  17. 17.
    N.E. Zander et al., J. Neurosci. Res. 93, 1353 (2015)CrossRefGoogle Scholar
  18. 18.
    P.J. VandeVord et al., Neurosci. Lett. 434, 247 (2008)CrossRefGoogle Scholar
  19. 19.
    T.W. Sawyer et al., J. Neurotrauma 34, 517–528 (2017)CrossRefGoogle Scholar
  20. 20.
    P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1972)CrossRefGoogle Scholar
  21. 21.
    R. Menikoff, Empirical equations of state for solids, in Shock Wave Science and Technology Reference Library – Solids I, ed. Y. Horie (Springer, Berlin, 2007)CrossRefGoogle Scholar
  22. 22.
    A.M. Mastro et al., PNAS 81, 3414 (1984)CrossRefGoogle Scholar
  23. 23.
    M. Nakahara et al., Jpn. J. Appl. Phys. 47, 3510 (2008)CrossRefGoogle Scholar
  24. 24.
    S.S.M. Lau-Chapdelaine, M.I. Radulescu, Viscous solution of the triple-shock reflection problem. Shock Waves 26, 551 (2016)CrossRefGoogle Scholar
  25. 25.
    S.A.E.G. Falle, Mon. Not. R. Astr. Soc. 250, 581 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of OttawaOttawaCanada

Personalised recommendations