Mathematical Modeling of the Impact of High-Speed Metallic Plates

  • S. Fortova
  • P. Utkin
  • V. Shepelev
  • T. Kazakova
Conference paper


The paper is devoted to the mathematical modeling of the problem of two metal plates impact using two approaches. In the first approach, the problem is solved using three-dimensional Euler equations and the stiffened gas equation of state for the media. The parameters of the equation of state are calibrated using wide-range equations of state computations of the parameters of shock waves which form after the impact. The second approach is based on one-dimensional two-fluid seven-equation model. In simulations of metal plates impact, we get two shocks after the initial impact that propagate to the free surfaces of the samples. The characteristics of shock waves are close (maximum relative error in characteristics of shocks is not greater than 7%) to the data from the wide-range equations of states computations.


  1. 1.
    S. Fortova, L. Kraginskii, A. Chikitkin, E. Oparina, Math. Mod. Comput. Simul. 5, 607 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Belotserkovskaya, A. Pronina, S. Fortova, V. Shepelev, Comput. Math. Math. Phys. 56, 1162 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    I.V. Yakovlev, Fizika goreniiy i vzryva. 9, 447 (1973)Google Scholar
  4. 4.
    O. Belotserkovsky, S. Fortova, O. Troshkin, A. Pronina, I. Eriklintsev, S. Kozlov, Math. Mod. Comput. Simul. 8, 497 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Fortova, V. Shepelev, A. Pronina, P. Utkin, J. Phys. Conf. Ser. 774, paper No. 012028 (2016)Google Scholar
  6. 6.
    S. Godunov, A. Deribas, A. Zabrodin, N. Kozin, J. Comput. Phys. 5, 517 (1970)CrossRefGoogle Scholar
  7. 7.
    S. Godunov, A. Zabrodin, M. Ivanov, A. Krayko, G. Prokopov, Numerical Solution of the Multidimensional Gas Dynamics Problems (Nauka, Moscow, 1976)Google Scholar
  8. 8.
    V. Demchenko, M. Sergeev, Fluid Dyn. 38, 923 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Godunov, S. Kiselev, I. Kulikov, V. Mali, Proc. Steklov Inst. Math. 281, 12 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    V. Fortov, V. Kim, I. Lomonosov, A. Matveichev, A. Ostrik, Int. J. Impact Eng. 33, 244 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Kulikovskii, N. Pogorelov, A. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman and Hall/CRC, London, 2000)CrossRefGoogle Scholar
  12. 12.
    R. Saurel, R. Abgrall, J. Comput. Phys. 150, 425 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Saurel, O. Lemetayer, J. Fluid Mech. 431, 239 (2001)CrossRefGoogle Scholar
  14. 14.
    Shock Wave Database,
  15. 15.
    V. E. Fortov, K. V. Khishchenko, P. R. Levashov, I. V. Lomonosov, Nucl. Instr. Meth. Phys. Res. 415, 604 (1998)Google Scholar
  16. 16.
    S. Liang, W. Liu, L. Yuan, Comput. Fluids 99, 156 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • S. Fortova
    • 1
  • P. Utkin
    • 1
    • 2
  • V. Shepelev
    • 1
  • T. Kazakova
    • 2
  1. 1.Institute for Computer Aided Design of the Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia

Personalised recommendations