Advertisement

Shock Shape Transition on Spherically Blunted Cones in Hypersonic Flows

  • J. Martinez Schramm
  • K. HannemannEmail author
  • H. G. Hornung
Conference paper

Abstract

Spherically blunted cones are commonly utilized as re-entry or entry capsules. Depending on the cone angle, the shock shape is either dominated by the spherical nose or the conical part. In flight a transition between these two situations might occur, and this can result in undesirable effects on the aerodynamic stability. To understand the shock shape transition behaviour in more detail, a systematic numerical and experimental study is ongoing. In the present article, the influence of vibrational non-equilibrium compared to frozen flow is discussed for sphere-cone configurations at zero-degree angle of attack.

References

  1. 1.
    D. Friedl, J. Martinez Schramm, K. Hannemann, Measurements by means of optical tracking in the High Enthalpy Shock Tunnel Göttingen, HEG, in 8th European Symposium on Aerothermodynamics for Space Vehicles, Lisbon, Portugal, 02–06 March 2015Google Scholar
  2. 2.
    K. Hannemann, J. Martinez Schramm, S. Karl, Recent extensions to the High Enthalpy Shock Tunnel Göttingen (HEG), in Proceedings of the 2nd International ARA Days “Ten Years after ARD”, Arcachon, France, 21–23 October 2008Google Scholar
  3. 3.
    K. Hannemann, S. Karl, J. Martinez Schramm, J. Steelant, Methodology of a combined ground based testing and numerical modelling analysis of supersonic combustion flow paths. Shock Waves 20(5), 353–366 (2010), SpringerGoogle Scholar
  4. 4.
    K. Hannemann, J. Martinez Schramm, S. Karl, S.J. Laurence, Enhancement of free flight force measurement technique for scramjet engine shock tunnel testing, in 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, AIAA 2017-2235, 2017Google Scholar
  5. 5.
    W.D. Hayes, R.F. Probstein, Hypersonic Flow Theory (Academic Press, New York, 1959)zbMATHGoogle Scholar
  6. 6.
    H.G. Hornung, J. Martinez Schramm, K. Hannemann, Sonic line and stand–off distance on re–entry capsule shapes, in Proceedings of the 28th International Symposium on Shock Waves held in Manchester UK, 17–22 July 2011, vol. 1, , ed. by K. Kontis (Springer, 2012)Google Scholar
  7. 7.
    S. Karl, Numerical Investigation of a Generic Scramjet Configuration. PhD thesis, Technical University Dresden, 2011Google Scholar
  8. 8.
    A. Klomfaß, Hyperschallströmungen im thermischen Nichtgleichgewicht. PhD thesis, RWTH Aachen, Berichte aus der Luft- und Raumfahrt, Shaker, 1995Google Scholar
  9. 9.
    S.J. Laurence, On tracking the motion of rigid bodies through edge detection and least-squares fitting. Exp. Fluids 52(2), 387–401 (2012)CrossRefGoogle Scholar
  10. 10.
    D. Schwamborn, T. Gerhold, R. Heinrich, The DLR Tau-Code: Recent applications in research and industry, in Proceedings of the European Conference on Computational Fluid Dynamics ECCOMAS, ed. by P. Wesseling, E. Onate, J. Periaux (TU Delft, The Netherlands, 2006)Google Scholar
  11. 11.
    G.I. Taylor, J.W. Maccoll, The air pressure on a cone moving at high speed. Proc. Roy. Soc. A 139, 278–311 (1933)CrossRefGoogle Scholar
  12. 12.
    C.-Y. Wen, H.G. Hornung, Non-equilibrium dissociating flow over spheres. J. Fluid Mech. 299 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • J. Martinez Schramm
    • 1
  • K. Hannemann
    • 1
    Email author
  • H. G. Hornung
    • 2
  1. 1.German Aerospace Center, DLR, Institute for Aerodynamics and Flow Technology, Spacecraft DepartmentGöttingenGermany
  2. 2.GALCIT, CaltechPasadenaUSA

Personalised recommendations