Numerical Study of Hydrogen–Air Detonation in Vibrational Non-equilibrium

  • L. S. Shi
  • P. Zhang
  • C. Y. WenEmail author
  • H. Shen
  • M. Parsani
  • D. L. Zhang
Conference paper


The effects of vibrational non-equilibrium and vibration–chemistry coupling on hydrogen–air detonation are numerically investigated by solving reactive Euler equations coupled with a multiple vibrational temperature-based model. Detailed hydrogen–air reaction kinetic is utilized, Landau–Teller model is adopted to solve the vibrational relaxation process, and the coupled vibration–chemistry vibration model is used to evaluate the vibration–chemistry coupling. It is shown that the relaxation process and vibration–chemistry coupling considerably influence the hydrogen–air detonation structure, highlighting the importance of correct treatment of vibrational non-equilibrium in detonation simulations.



We are grateful for the computing resources of the Supercomputing Laboratory and the Extreme Computing Research Center at King Abdullah University of Science and Technology. This research was supported by Hong Kong Innovation and Technology Commission (no. ITS/334/15FP) and Natural Science Foundation of China project, numbered 11372265.


  1. 1.
    M.J. Kaneshige, Gaseous Detonation Initiation and Stabilization by Hypervelocity Projectiles (California Institute of Technology, Pasadena, 1999)Google Scholar
  2. 2.
    N. Tsuboi et al., Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures. Proc. Combust. Inst. 29, 2 (2002)CrossRefGoogle Scholar
  3. 3.
    V.N. Gamezo et al., Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture. Proc. Combust. Inst. 31, 2 (2007)CrossRefGoogle Scholar
  4. 4.
    R. Millikan, D. White, Vibrational relaxation in air. AIAA J. 2, 10 (1964)CrossRefGoogle Scholar
  5. 5.
    V. Komarov, Role of vibrational relaxation in the nonequilibrium flow of air in nozzles. J. Appl. Mech. Tech. Phys. 19, 2 (1978)CrossRefGoogle Scholar
  6. 6.
    O. Knab et al., Theory and validation of the physically consistent coupled vibration-chemistry-vibration model. J. Thermophys. Heat Transf. 9, 2 (1995)CrossRefGoogle Scholar
  7. 7.
    C. Park, Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen. J. Thermophys. Heat Transf. 2, 1 (1988)CrossRefGoogle Scholar
  8. 8.
    B. Taylor et al., Estimates of vibrational nonequilibrium time scales in hydrogen-air detonation waves, in 24th International Colloquium on the Dynamics of Explosive and Reactive Systems, Taipei, Taiwan, July 2013Google Scholar
  9. 9.
    S.-C. Chang, The method of space-time conservation element and solution element—A new approach for solving the Navier-Stokes and Euler equations. J. Comput. Phys. 119, 2 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Shen, C.-Y. Wen, A characteristic space–time conservation element and solution element method for conservation laws II. Multidimensional extension. J. Comput. Phys. 305, 775–792 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Shen et al., Robust high-order space–time conservative schemes for solving conservation laws on hybrid meshes. J. Comput. Phys. 281, 375–402 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Shen et al., A characteristic space–time conservation element and solution element method for conservation laws. J. Comput. Phys. 288, 101–118 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Shen et al., Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids. J. Comput. Phys. 330, 668–692 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Shen, M. Parsani, The role of multidimensional instabilities in direct initiation of gaseous detonations in free space. J. Fluid Mech. 813, R4 (2017)Google Scholar
  15. 15.
    L. Shi et al., Assessment of vibrational non-equilibrium effect on detonation cell size. Combust. Sci. Technol. 189, 5 (2016)Google Scholar
  16. 16.
    M.P. Burke et al., Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 7 (2012)CrossRefGoogle Scholar
  17. 17.
    R.J. Kee et al., CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, Sandia national laboratories report SAND96-8216 (1996)Google Scholar
  18. 18.
    R.C. Millikan, D.R. White, Systematics of vibrational relaxation. J. Chem. Phys. 39, 12 (1963)Google Scholar
  19. 19.
    W.G. Vincenti, C.H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, 1965), pp. 198–206Google Scholar
  20. 20.
    Z. Hong et al., A new shock tube study of the H + O 2 → OH + O reaction rate using tunable diode laser absorption of H 2 O near 2.5 μm. Proc. Combust. Inst. 33, 1 (2011)CrossRefGoogle Scholar
  21. 21.
    M.F. Campbell et al., Dependence of calculated postshock thermodynamic variables on vibrational equilibrium and input uncertainty. J. Thermophys. Heat Transf. 31, 586–608 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • L. S. Shi
    • 1
  • P. Zhang
    • 1
  • C. Y. Wen
    • 1
    Email author
  • H. Shen
    • 2
  • M. Parsani
    • 2
  • D. L. Zhang
    • 3
  1. 1.Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
  2. 2.King Abdullah University of Science and Technology (KAUST), Computer Electrical and Mathematical Science and Engineering Division (CEMSE)Extreme Computing Research Center (ECRC)ThuwalSaudi Arabia
  3. 3.State Key Laboratory of High Temperature Gas DynamicsInstitute of Mechanics, Chinese Academy of SciencesBeijingChina

Personalised recommendations