Skip to main content

ISS in Spatial Lp Norms for Hyperbolic PDEs

  • Chapter
  • First Online:
Input-to-State Stability for PDEs

Part of the book series: Communications and Control Engineering ((CCE))

  • 710 Accesses

Abstract

The chapter deals with the derivation of ISS estimates expressed in spatial \( L^{p} \) norms for 1-D, first-order, hyperbolic PDEs with a constant transport velocity. Two different methodologies for deriving ISS estimates are provided. The first methodology is the use of ISS-Lyapunov Functionals (ISS-LFs). The second methodology utilizes the transformation to a system of Integral Delay Equations (IDEs). The latter methodology provides ISS estimates expressed only in the sup-norm of the state and the derivation of the ISS estimate is performed by using a Lyapunov-like function (not a functional). Finally, the differences between the two methodologies are explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hale JK, Lunel SMV (1993) Introduction to functional differential equations. Springer, New York

    Book  Google Scholar 

  2. Karafyllis I, Jiang Z-P (2011) Stability and stabilization of nonlinear systems. Communications and control engineering. Springer, London

    Chapter  Google Scholar 

  3. Pepe P (2003) The Liapunov’s second method for continuous time difference equations. Int J Robust Nonlinear Control 13:1389–1405

    Article  MathSciNet  Google Scholar 

  4. Bastin G, Coron J-M (2016) Stability and boundary stabilization of 1-D hyperbolic systems. Progress in nonlinear differential equations and their applications. Springer, Berlin

    Book  Google Scholar 

  5. Karafyllis I, Daoutidis P (2002) Control of hot spots in plug flow reactors. Comput Chem Eng 26:1087–1094

    Article  Google Scholar 

  6. Li T-T, Libin W (2009) Global propagation of regular nonlinear hyperbolic waves. Birkhauser, Boston

    Google Scholar 

  7. Perthame B (2007) Transport equations in biology. Birkhäuser Verlag

    Google Scholar 

  8. Krstic M, Smyshlyaev A (2008) Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst Control Lett 57(9):750–758

    Article  MathSciNet  Google Scholar 

  9. Krstic M (2009) Delay compensation for nonlinear, adaptive, and PDE systems. Birkhäuser, Boston

    Chapter  Google Scholar 

  10. Ha S-Y, Tzavaras A (2003) Lyapunov functionals and L1-stability for discrete velocity boltzmann equations. Commun Math Phys 239:65–92

    Article  Google Scholar 

  11. Toth D, Kot M (2006) Limit cycles in a chemostat model for a single species with age structure. Math Biosci 202:194–217

    Article  MathSciNet  Google Scholar 

  12. Kmit I (2008) Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems. Int J Dyn Syst Differ Equ 1(3):191–195

    MathSciNet  MATH  Google Scholar 

  13. Li TT (2009) Controllability and observability for quasilinear hyperbolic systems, vol 3. Higher Education Press, Beijing

    Google Scholar 

  14. Rauch J, Taylor M (1975) Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ Math J 24

    Google Scholar 

  15. Russell DL (1978) Canonical forms and spectral determination for a class of hyperbolic distributed parameter control systems. J Math Anal Appl 62(1):186–225

    Article  MathSciNet  Google Scholar 

  16. Xu C-Z, Sallet G (2002) Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems. ESAIM: Control Optim Calculus Var 7:421–442

    Article  MathSciNet  Google Scholar 

  17. Cooke KL, Krumme DW (1968) Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations. J Math Anal Appl 24(2):372–387

    Article  MathSciNet  Google Scholar 

  18. Karafyllis I, Pepe P, Jiang Z-P (2009) Stability results for systems described by coupled retarded functional differential equations and functional difference equations. Nonlinear Anal Theory Methods Appl 71(7–8):3339–3362

    Article  MathSciNet  Google Scholar 

  19. Karafyllis I, Krstic M (2014) On the relation of delay equations to first-order hyperbolic partial differential equations. ESAIM Control Optim Calculus Var 20(3):894–923

    Article  MathSciNet  Google Scholar 

  20. Karafyllis I, Krstic M (2017) Stability of integral delay equations and stabilization of age-structured models. ESAIM Control Optim Calculus Var 23(4):1667–1714

    Article  MathSciNet  Google Scholar 

  21. Russell DL (1991) Neutral FDE canonical representations of hyperbolic systems. J Integr Eq Appl 3(1):129–166

    Article  MathSciNet  Google Scholar 

  22. Anfinsen H, Diagne M, Aamo OM, Krstic M (2016) An adaptive observer design for n + 1 coupled linear hyperbolic PDEs based on swapping. IEEE Trans Autom Control 61:3979–3990

    Article  MathSciNet  Google Scholar 

  23. Anfinsen H, Diagne M, Aamo OM, Krstic M (2017) Estimation of boundary parameters in general heterodirectional linear hyperbolic systems. Automatica 79:185–197

    Article  MathSciNet  Google Scholar 

  24. Bernard P, Krstic M (2014) Adaptive output-feedback stabilization of non-local hyperbolic PDEs. Automatica 50:2692–2699

    Article  MathSciNet  Google Scholar 

  25. Bribiesca-Argomedo F, Krstic M (2015) Backstepping-forwarding control and observation for hyperbolic PDEs With fredholm integrals. IEEE Trans Autom Control 60(8):2145–2160

    Article  MathSciNet  Google Scholar 

  26. Coron J-M, Vazquez R, Krstic M, Bastin G (2013) Local exponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping. SIAM J Control Optim 51(3):2005–2035

    Article  MathSciNet  Google Scholar 

  27. Coron J-M, Hu L, Olive G (2016) Stabilization and controllability of first-order integro-differential hyperbolic equations. J Funct Anal 271:3554–3587

    Article  MathSciNet  Google Scholar 

  28. Coron J-M, Hu L, Olive G (2017) Finite-time boundary stabilization of general linear hyperbolic balance laws via fredholm backstepping transformation. arXiv:1701.05067[math.OC]

  29. Di Meglio F, Vazquez R, Krstic M (2013) Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans Autom Control 58(12):3097–3111

    Article  MathSciNet  Google Scholar 

  30. Hasan A, Aamo OM, Krstic M (2016) Boundary observer design for hyperbolic PDE-ODE cascade systems. Automatica 68:75–86

    Article  MathSciNet  Google Scholar 

  31. Hu L, Di Meglio F, Vazquez R, Krstic M (2016) Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs. IEEE Trans Autom Control 61:3301–3314

    Article  MathSciNet  Google Scholar 

  32. Krstic M, Smyshlyaev A (2008) Boundary control of PDEs: A course on backstepping designs. In: SIAM

    Google Scholar 

  33. Prieur C, Winkin J, Bastin G (2008) Robust boundary control of systems of conservation laws. Math Control Signals Syst 20(2):173–197

    Article  MathSciNet  Google Scholar 

  34. Vazquez R, Coron J-M, Krstic M, Bastin G (2012) Collocated output-feedback stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping. In: Proceedings of the 2012 American Control conference, Montreal, Canada, pp 2202–2207

    Google Scholar 

  35. Vazquez R, Krstic M (2014) Marcum Q-functions and explicit kernels for stabilization of 2 × 2 linear hyperbolic systems with constant coefficients. Syst Control Lett 68:33–42

    Article  MathSciNet  Google Scholar 

  36. Zhang L, Prieur C (2017) Necessary and sufficient conditions on the exponential stability of positive hyperbolic systems. IEEE Trans Autom Control 62(7):3610–3617

    Article  MathSciNet  Google Scholar 

  37. Prieur C, Mazenc F (2012) ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws. Math Control Signals Syst 24(1):111–134

    Article  MathSciNet  Google Scholar 

  38. Karafyllis I, Krstic M (2017) Predictor feedback for delay systems: Implementations and approximations. Mathematics, systems & control: foundations & applications. Birkhäuser, Boston

    Chapter  Google Scholar 

  39. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iasson Karafyllis .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karafyllis, I., Krstic, M. (2019). ISS in Spatial Lp Norms for Hyperbolic PDEs. In: Input-to-State Stability for PDEs. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-91011-6_3

Download citation

Publish with us

Policies and ethics