Skip to main content

Preview

  • Chapter
  • First Online:
Book cover Input-to-State Stability for PDEs

Part of the book series: Communications and Control Engineering ((CCE))

  • 695 Accesses

Abstract

A preview of the material contained in the book is given in this chapter. The technical difficulties for the extension of Input-to-State Stability (ISS) to systems containing at least one PDE are illustrated by means of various examples. The chapter also offers an overview of the topics covered in the book as well as a brief presentation of the contents of all subsequent chapters. A list of all applications contained in the book is provided. The applications include mathematical models arising in various scientific disciplines. Finally, the required background for a reader of the book is detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeli D, Sontag ED, Wang Y (2003) Input-to-state stability with respect to inputs and their derivatives. Int J Robust Nonlinear Control 13:1035–1056

    Article  MathSciNet  Google Scholar 

  2. Balakrishnan AV (1981) Applied functional analysis, 2nd edn. Springer, New York

    MATH  Google Scholar 

  3. Bensoussan A, Da Prato G, Delfour MC, Mitter SK (2007) Representation and control of infinite dimensional systems, 2nd edn. Series: Mathematics, systems & control: foundations & applications. Birkhäuser, Boston

    Book  Google Scholar 

  4. Bribiesca Argomedo F, Witrant E, Prieur C (2012) D1-input-to-state stability of a time-varying nonhomogeneous diffusive equation subject to boundary disturbances. In: Proceedings of the American control conference, Montreal, QC, pp 2978–2983

    Google Scholar 

  5. Bribiesca Argomedo F, Prieur C, Witrant E, Bremond S (2013) A strict control Lyapunov function for a diffusion equation with time-varying distributed coefficients. IEEE Trans Autom Control 58:290–303

    Article  MathSciNet  Google Scholar 

  6. Cai C, Teel A (2009) Characterizations of input-to-state stability for hybrid systems. Syst Control Lett 58(1):47–53

    Article  MathSciNet  Google Scholar 

  7. Dashkovskiy S, Mironchenko A (2010) On the uniform input-to-state stability of reaction-diffusion systems. In: Proceedings of the 49th conference on decision and control, Atlanta, GA, USA, pp 6547–6552

    Google Scholar 

  8. Dashkovskiy S, Mironchenko A (2011) Local ISS of reaction-diffusion systems. In: Proceedings of the 18th IFAC world congress, Milano, Italy, pp 11018–11023

    Article  Google Scholar 

  9. Dashkovskiy S, Mironchenko A (2013) Input-to-state stability of infinite-dimensional control systems. Math Control Signals Syst 25:1–35

    Article  MathSciNet  Google Scholar 

  10. Dashkovskiy S, Mironchenko A (2013) Input-to-state stability of nonlinear impulsive systems. SIAM J Control Optim 51:1962–1987

    Article  MathSciNet  Google Scholar 

  11. Day WA (1982) Extension of a property of the heat equation to linear thermoelasticity and other theories. Q Appl Math 40:319–330

    Article  MathSciNet  Google Scholar 

  12. Day WA (1983) A decreasing property of solutions of parabolic equations with applications to thermoelasticity. Q Appl Math 40:468–475

    Article  MathSciNet  Google Scholar 

  13. Desch W, Lasiecka I, Schappacher W (1985) Feedback boundary control problems for linear semigroups. Isr J Math 51:177–207

    Article  MathSciNet  Google Scholar 

  14. Ekolin G (1991) Finite difference methods for a nonlocal boundary value problem for the heat equation. BIT 31:245–261

    Article  MathSciNet  Google Scholar 

  15. Fairweather G, Lopez-Marcos JC (1996) Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions. Adv Comput Math 6:243–262

    Article  MathSciNet  Google Scholar 

  16. Friedman A (1986) Monotone decay of solutions of parabolic equations with nonlocal boundary conditions. Q Appl Math 44:401–407

    Article  Google Scholar 

  17. Hespanha JP, Liberzon D, Teel AR (2008) Lyapunov conditions for input-to-state stability of impulsive systems. Automatica 44(11):2735–2744

    Article  MathSciNet  Google Scholar 

  18. Jacob B, Nabiullin R, Partington JR, Schwenninger F. Infinite-dimensional input-to-state stability and Orlicz spaces. arXiv:1609.09741 [math.OC]

    Google Scholar 

  19. Jacob B, Nabiullin R, Partington JR, Schwenninger F (2016) On input-to-state-stability and integral input-to-state-stability for parabolic boundary control systems. In: Proceedings of MTNS 2016

    Google Scholar 

  20. Jayawardhana B, Logemann H, Ryan EP (2008) Infinite-dimensional feedback systems: the circle criterion and input-to-state stability. Commun Inf Syst 8:403–434

    MathSciNet  MATH  Google Scholar 

  21. Jiang Z-P, Teel A, Praly L (1994) Small-gain theorem for ISS systems and applications. Math Control Signals Syst 7:95–120

    Article  MathSciNet  Google Scholar 

  22. Karafyllis I, Pepe P, Jiang Z-P (2008) Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations. Eur J Control 14(6):516–536

    Article  MathSciNet  Google Scholar 

  23. Karafyllis I, Pepe P, Jiang Z-P (2008) Input-to-output stability for systems described by retarded functional differential equations. Eur J Control 14(6):539–555

    Article  MathSciNet  Google Scholar 

  24. Karafyllis I, Jiang Z-P (2011) Stability and stabilization of nonlinear systems. Series: Communications and control engineering. Springer, London

    Chapter  Google Scholar 

  25. Karafyllis I, Krstic M (2014) On the relation of delay equations to first-order hyperbolic partial differential equations. ESAIM Control Optim Calc Var 20:894–923

    Article  MathSciNet  Google Scholar 

  26. Karafyllis I, Pepe P (2015) A note on converse Lyapunov results for neutral systems. In: Karafyllis I, Malisoff M, Mazenc F, Pepe P (eds) Recent results on nonlinear time delayed systems. Advances in delays and dynamics, vol 4. Springer, Berlin

    Google Scholar 

  27. Karafyllis I, Krstic M (2016) Input-to state stability with respect to boundary disturbances for the 1-D heat equation. In: Proceedings of the 55th IEEE conference on decision and control, pp 2247–2252

    Google Scholar 

  28. Karafyllis I, Krstic M (2016) ISS with respect to boundary disturbances for 1-D parabolic PDEs. IEEE Trans Autom Control 61:3712–3724

    Article  MathSciNet  Google Scholar 

  29. Karafyllis I, Krstic M (2017) ISS in different norms for 1-D parabolic PDEs with boundary disturbances. SIAM J Control Optim 55:1716–1751

    Article  MathSciNet  Google Scholar 

  30. Karafyllis I, Krstic M (2017) Predictor feedback for delay systems: implementations and approximations. Series: Mathematics, systems & control: foundations & applications. Birkhäuser, Boston

    Chapter  Google Scholar 

  31. Karafyllis I, Krstic M. Decay estimates for 1-D parabolic PDEs with boundary disturbances. Submitted to ESAIM Control Optim Calc Var (see also arXiv:1706.01410 [math.OC])

    Google Scholar 

  32. Krstic M, Kanellakopoulos I, Kokotovic PV (1995) Nonlinear and adaptive control design. Wiley, New York

    MATH  Google Scholar 

  33. Krstic M, Smyshlyaev A (2008) Boundary control of PDEs: a course on backstepping designs. SIAM, USA

    Google Scholar 

  34. Lasiecka I (1980) Unified theory for abstract parabolic boundary problems—a semigroup approach. Appl Math Optim 6:287–333

    Article  MathSciNet  Google Scholar 

  35. Lasiecka I, Triggiani R (1991) Differential and algebraic Riccati equations with application to boundary point control problems: continuous theory and approximation theory. Lecture notes in control and information sciences. Springer, Berlin

    Google Scholar 

  36. Lasiecka I, Tataru D (1993) Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ Integr Equ 6:507–533

    MathSciNet  MATH  Google Scholar 

  37. Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories I. Abstract parabolic systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  38. Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories II. Abstract hyperbolic-like systems over a finite time horizon. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  39. Lin Y, Sontag ED, Wang Y (1996) A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim 34:124–160

    Article  MathSciNet  Google Scholar 

  40. Liu Y (1999) Numerical solution of the heat equation with nonlocal boundary conditions. J Comput Appl Math 110:115–127

    Article  MathSciNet  Google Scholar 

  41. Logemann H (2014) Infinite-dimensional Lur’e systems: the circle criterion, input-to-state stability and the converging-input-converging-state property. In: Proceedings of the 21st international symposium on mathematical theory of networks and systems, Groningen, The Netherlands, pp 1624–1627

    Google Scholar 

  42. Mazenc F, Prieur C (2011) Strict Lyapunov functionals for nonlinear parabolic partial differential equations. In: Proceedings of the 18th IFAC world congress, Milan, Italy, vol 44, pp 12550–12555

    Article  Google Scholar 

  43. Mazenc F, Prieur C (2011) Strict Lyapunov functions for semilinear parabolic partial differential equations. Math Control Relat Fields AIMS 1:231–250

    Article  MathSciNet  Google Scholar 

  44. Mironchenko A, Ito H (2014) Integral input-to-state stability of bilinear infinite-dimensional systems. In: Proceedings of the 53rd IEEE conference on decision and control, Los Angeles, California, USA, pp 3155–3160

    Google Scholar 

  45. Mironchenko A, Ito H (2015) Construction of Lyapunov functions for interconnected parabolic systems: an iISS approach. SIAM J Control Optim 53:3364–3382

    Article  MathSciNet  Google Scholar 

  46. Mironchenko A (2016) Local input-to-state stability: characterizations and counterexamples. Syst Control Lett 87:23–28

    Article  MathSciNet  Google Scholar 

  47. Mironchenko A, Wirth F (2016) Restatements of input-to-state stability in infinite dimensions: what goes wrong. In: Proceedings of the 22nd international symposium on mathematical theory of systems and networks, pp 667–674

    Google Scholar 

  48. Mironchenko A, Wirth F (2016) Global converse Lyapunov theorems for infinite-dimensional systems. In: Proceedings of the 10th IFAC symposium on nonlinear control systems, pp 909–914

    Article  Google Scholar 

  49. Mironchenko A, Wirth F. Characterizations of input-to-state stability for infinite-dimensional systems. To appear in IEEE transactions on automatic control

    Google Scholar 

  50. Mironchenko A, Wirth F (2017) A non-coercive Lyapunov framework for stability of distributed parameter systems. Proceedings of the 56th IEEE conference on decision and control, pp 1900–1905

    Google Scholar 

  51. Mironchenko A, Wirth F (2017) Input-to-state stability of time-delay systems: criteria and open problems. Proceedings of the 56th IEEE conference on decision and control, pp 3719–3724

    Google Scholar 

  52. Mironchenko A, Karafyllis I, Krstic M. Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances. Submitted to SIAM J Control Optim (see also arXiv:1706.07224 [math.OC])

    Google Scholar 

  53. Pao CV (1998) Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions. J Comput Appl Math 88:225–238

    Article  MathSciNet  Google Scholar 

  54. Pao CV (2001) Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions. J Comput Appl Math 136:227–243

    Article  MathSciNet  Google Scholar 

  55. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Springer, New York

    Book  Google Scholar 

  56. Pepe P, Jiang Z-P (2006) A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems. Syst Control Lett 55(12):1006–1014

    Article  MathSciNet  Google Scholar 

  57. Pepe P, Karafyllis I, Jiang Z-P (2017) Lyapunov-Krasovskii characterization of the input-to-state stability for neutral systems in Hale’s form. Syst Control Lett 102:48–56

    Article  MathSciNet  Google Scholar 

  58. Prieur C, Mazenc F (2012) ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws. Math Control Signals Syst 24:111–134

    Article  MathSciNet  Google Scholar 

  59. Smyshlyaev A, Krstic M (2004) Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Trans Autom Control 49:2185–2202

    Article  MathSciNet  Google Scholar 

  60. Smyshlyaev A, Krstic M (2010) Adaptive control of parabolic PDEs. Princeton University Press, Princeton

    Book  Google Scholar 

  61. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Autom Control 34:435–443

    Article  MathSciNet  Google Scholar 

  62. Sontag ED, Wang Y (1995) On characterizations of the input-to-state stability property. Syst Control Lett 24:351–359

    Article  MathSciNet  Google Scholar 

  63. Sontag ED, Wang Y (1996) New characterizations of input to state stability. IEEE Trans Autom Control 41:1283–1294

    Article  MathSciNet  Google Scholar 

  64. Sontag ED (1998) Comments on integral variants of ISS. Syst Control Lett 34:93–100

    Article  MathSciNet  Google Scholar 

  65. Sontag ED, Wang Y (1999) Notions of input to output stability. Syst Control Lett 38:235–248

    Article  MathSciNet  Google Scholar 

  66. Sontag ED, Wang Y (2001) Lyapunov characterizations of input to output stability. SIAM J Control Optim 39:226–249

    Article  MathSciNet  Google Scholar 

  67. Sontag ED (2008) Input-to-state stability: basic concepts and results. In: Nistri P, Stefani G (eds) Nonlinear and optimal control theory. Lectures given at the C.I.M.E. Summer School Held in Cetraro, Italy, June 19–29 2004, vol 1932. Lecture notes in mathematics, pp 163–220. Springer, Berlin

    Chapter  Google Scholar 

  68. Vu L, Chatterjee D, Liberzon D (2007) Input-to-state stability of switched systems and switching adaptive control. Automatica 43(4):639–646

    Article  MathSciNet  Google Scholar 

  69. Zheng J, Zhu G. Input-to state stability with respect to boundary disturbances for a class of semi-linear parabolic equations. arXiv:1709.01880 [math.OC]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iasson Karafyllis .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karafyllis, I., Krstic, M. (2019). Preview. In: Input-to-State Stability for PDEs. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-91011-6_1

Download citation

Publish with us

Policies and ethics