RNA Quasi-Orthogonal Block Code

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

This paper presents a single strand ribonucleic acid (RNA) Kronecker product of double stochastic matrix to a deoxyribose nucleic acid (DNA) double helix based on the block circulant Jacket matrix (BCJM) characteristics which is used to develop a bioinformatics for the molecular communications. The RNA matrix decomposition is the form of the Kronecker product of Hadamard matrices with its pair complementarity. The variants of kernel of the Kronecker families are produced by permutations of the four letters C, A, U, G on positions in the matrix. This decomposition of DNA to RNA leads very clearly to the Kronecker product of the symmetrical genetic matrices. We also analyze DNA quasi-orthogonal matrix.

Keywords

RNA DNA Kronecker product Hadamard/identity matrix Quasi-orthogonal matrix 

Notes

Acknowledgments

This work was supported by Ministry of Education Science and Technology (MEST) 2015R1A2A1A05000977, National Research Foundation (NRF), Republic of Korea.

References

  1. 1.
    Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids. Nature 171(4356), 737–738 (1953)CrossRefGoogle Scholar
  2. 2.
    Temin, H.M.: Nature of the provirus of rous sarcoma. Nat. Cancer Inst. Monogr. 17, 557–570 (1964)Google Scholar
  3. 3.
    Lee, M.H., Hou, J.: Fast block inverse Jacket transform. IEEE Signal Process. Lett. 13(8), 461–464 (2006)CrossRefGoogle Scholar
  4. 4.
    Lee, M.H., Hai, H., Zhang, X.D.: MIMO Communication Method and System using the Block Circulant Jacket Matrix, USA Patent 9,356,671, 31 May 2016Google Scholar
  5. 5.
    Petoukhov, S., Matthew, H.: Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics. Wiley, New York (2011)MATHGoogle Scholar
  6. 6.
    Lee, S.K., Park, D.C., Lee, M.H.: RNA genetic 8 by 8 matrix construction from the block circulant Jacket matrix. In: Symmetric Festival 2016, 18–22 July 2016, Vienna, Austria (2016)Google Scholar
  7. 7.
    Hou, J., Lee, M.H., Park, J.Y.: Matrices analysis of quasi-orthogonal space time block codes. IEEE Commun. Lett. 7(8), 385–387 (2003)CrossRefGoogle Scholar
  8. 8.
    Favrholdt, D. (ed.): Complementarity Beyond Physics. Niels Bohr Collected Works, vol. 1. Elsevier, Amsterdam (1928–1962). ISBN 978-0-444-53286-2Google Scholar
  9. 9.
    Hamdy, M.M.: DNA-genetic encryption technique. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 8(7), 1–9 (2016).  https://doi.org/10.5815/ijcnis.2016.07.01CrossRefGoogle Scholar
  10. 10.
    Khalil, M.I.: A new heuristic approach for DNA sequences alignment. Int. J. Image Graph. Signal Process. (IJIGSP) 7(12), 18–23 (2015)Google Scholar
  11. 11.
    Ajra, H., Hasan, M.Z., Islam, M.S.: BER analysis of various channel equalization schemes of a QO-STBC encoded OFDM based MIMO CDMA system. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 6(3), 30–36 (2014).  https://doi.org/10.5815/ijcnis.2014.03.04CrossRefGoogle Scholar
  12. 12.
    Siva Kumar Reddy, B., Lakshmi, B.: BER analysis with adaptive modulation coding in MIMO-OFDM for WiMAX using GNU radio. Int. J. Wirel. Microwave Technol. (IJWMT) 4(4), 20–34 (2014). https://doi.org/10.5815/ijwmt.2014.04.02CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Electronics and Information EngineeringChonbuk National UniversityJeonjuKorea

Personalised recommendations