Quality of Symptom-Based Diagnosis of Rotavirus Infection Based on Mathematical Modeling

  • Serhii O. Soloviov
  • Mohamad S. Hakim
  • Hera Nirwati
  • Abu T. Aman
  • Yati Soenarto
  • Qiuwei Pan
  • Iryna V. Dzyublyk
  • Tatiana I. Andreeva
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

Rotavirus is the leading cause of severe childhood gastroenteritis worldwide. The laboratory diagnosis requires testing of fecal specimens with commercial assays that often are not available in low resource settings. Therefore, estimation of rotavirus presence based on clinical symptoms is expected to improve the disease management without laboratory verification.

We aimed to develop and compare different mathematical approaches to model-based evaluation of expected rotavirus presence in patients with similar clinical symptoms. Two clinical datasets were used to develop clinical evaluation models of rotavirus presence or absence based on Bayesian network (BN), linear and nonlinear regression.

The developed models produced different levels of reliability. BN compared with regression models showed better rotavirus detection results according to optimal cut-off points. Such approach is viable to help physicians refer patient to the group with suspected rotavirus infection to avoid unnecessary antibiotic treatment and to prevent rotavirus infection spread in a hospital ward.

Keywords

Rotavirus infection Symptoms Bayesian network Regression 

Notes

Acknowledgements

The authors thank the Indonesia Endowment Fund for Education (LPDP) for funding Ph.D. fellowship to Mohamad S. Hakim.

Conflict of Interest

The authors declare to have no conflict of interest.

References

  1. 1.
    GBD 2015 Mortality and Causes of Death Collaborators: Global, regional and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963), 117–171 (2015)Google Scholar
  2. 2.
    Tate, J.E., et al.: 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect. Dis. 12(2), 136–141 (2012)CrossRefGoogle Scholar
  3. 3.
    Kawai, K., et al.: Burden of rotavirus gastroenteritis and distribution of rotavirus strains in Asia: a systematic review. Vaccine 30(7), 1244–1254 (2012)CrossRefGoogle Scholar
  4. 4.
    Lanata, C.F., et al.: Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One 8(9), e72788 (2013)CrossRefGoogle Scholar
  5. 5.
    Pratiwi, E., Setiawaty, V., Putranto, R.H.: Molecular characteristics of rotavirus isolated from a diarrhea outbreak in October 2008 in Bintuni Bay, Papua, Indonesia. Virology (Auckl) 5, 11–14 (2014)Google Scholar
  6. 6.
    Corwin, A.L., et al.: A large outbreak of probable rotavirus in Nusa Tenggara Timur Indonesia. Am. J. Trop. Med. Hyg. 72(4), 488–494 (2005)Google Scholar
  7. 7.
    Soenarto, Y., et al.: Burden of severe rotavirus diarrhea in Indonesia. J. Infect. Dis. 200(Suppl. 1), S188–S194 (2009)CrossRefGoogle Scholar
  8. 8.
    Nirwati, H., et al.: Detection of group a rotavirus strains circulating among children with acute diarrhea in Indonesia. Springerplus 5, 97 (2016)CrossRefGoogle Scholar
  9. 9.
    Wilopo, S.A., et al.: Rotavirus surveillance to determine disease burden and epidemiology in Java, Indonesia, August 2001 through April 2004. Vaccine 27(Suppl. 5), F61–F66 (2009)CrossRefGoogle Scholar
  10. 10.
    Parashar, U.D., Nelson, E.A., Kang, G.: Diagnosis, management, and prevention of rotavirus gastroenteritis in children. BMJ 347, f7204 (2013)CrossRefGoogle Scholar
  11. 11.
    Oliveira, J.: A shotgun wedding: business decision support meets clinical decision support. J. Healthc. Inf. Manag. 16(4), 28–33 (2002)Google Scholar
  12. 12.
    DeGruy, K.B.: Healthcare applications of knowledge discovery in databases. J. Healthc. Inf. Manag. 14(2), 59–69 (2000)Google Scholar
  13. 13.
    Hardin, J.M., Chhieng, D.C.: Data mining and clinical decision support systems. In: Clinical Decision Support Systems, pp. 44–63. Springer (2007)Google Scholar
  14. 14.
    Perreault, L.E., Metzger, J.B.: A pragmatic framework for understanding clinical decision support. J. Healthc. Inf. Manage. 13, 5–22 (1999)Google Scholar
  15. 15.
    Khabbaz, R.F., et al.: Challenges of infectious diseases in the USA. Lancet 384(9937), 53–63 (2014)CrossRefGoogle Scholar
  16. 16.
    Tleyjeh, I.M., Nada, H., Baddour, L.M.: VisualDx: decision-support software for the diagnosis and management of dermatologic disorders. Clin. Infect. Dis. 43(9), 1177–1184 (2006)CrossRefGoogle Scholar
  17. 17.
    Aminu, E.F., Ogbonnia, E.O., Shehu, I.S.: A predictive symptoms-based system using support vector machines to enhanced classification accuracy of malaria and typhoid coinfection. Int. J. Mathe. Sci. Comput. (IJMSC) 2(4), 54–66 (2016).  https://doi.org/10.5815/ijmsc.2016.04.06CrossRefGoogle Scholar
  18. 18.
    Abumelha, M., Hashbal, A., Nadeem, F., Aljohani, N.: Development of infection control surveillance system for intensive care unit: data requirements and guidelines. Int. J. Intell. Syst. Appl. (IJISA) 8(6), 19–26 (2016).  https://doi.org/10.5815/ijisa.2016.06.03CrossRefGoogle Scholar
  19. 19.
    Li, Z.N., et al.: Novel multiplex assay platforms to detect influenza a hemagglutinin subtype specific antibody responses for high-throughput and in-field applications. Influenza Other Respir. Viruses (2017)CrossRefGoogle Scholar
  20. 20.
    Sesen, M.B., et al.: Bayesian networks for clinical decision support in lung cancer care. PLoS One 8(12), e82349 (2013)CrossRefGoogle Scholar
  21. 21.
    Ewings, S.M., et al.: A Bayesian network for modelling blood glucose concentration and exercise in type 1 diabetes. Stat. Methods Med. Res. 24(3), 342–372 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dai, M., et al.: Mutation of the 2nd sialic acid-binding site resulting in reduced neuraminidase activity preceded emergence of H7N9 influenza a virus. J. Virol. (2017)Google Scholar
  23. 23.
    Mani, K., Kalpana, P.: An efficient feature selection based on bayes theorem, self information and sequential forward selection. Int. J. Inf. Eng. Electron. Bus. (IJIEEB) 8(6), 46–54 (2016).  https://doi.org/10.5815/ijieeb.2016.06.06CrossRefGoogle Scholar
  24. 24.
    Abente, E.J., et al.: A highly pathogenic avian-derived influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrates increased replication and transmission in pigs. J. Gen. Virol. 98(1), 18–30 (2017)CrossRefGoogle Scholar
  25. 25.
    Ullah, Z., Fayaz, M., Iqbal, A.: Critical analysis of data mining techniques on medical data. Int. J. Mod. Educ. Computer Science (IJMECS) 8(2), 42–48 (2016).  https://doi.org/10.5815/ijmecs.2016.02.05CrossRefGoogle Scholar
  26. 26.
    Kedzierski, L., et al.: Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling. Elife (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine
  2. 2.Department of VirologyShupyk National Medical Academy of Postgraduate EducationKyivUkraine
  3. 3.Department of Gastroenterology and HepatologyErasmus MC-University Medical CenterRotterdamThe Netherlands
  4. 4.Department of Microbiology, Faculty of MedicineUniversitas Gadjah MadaYogyakartaIndonesia
  5. 5.Department of Child Health, Faculty of MedicineUniversitas Gadjah MadaYogyakartaIndonesia
  6. 6.Department of Public HealthBabeș-Bolyai UniversityCluj-NapocaRomania
  7. 7.Alcohol and Drug Information CenterKyivUkraine

Personalised recommendations