The Study of Visual Self-adaptive Controlled MeanShift Algorithm

  • P. H. Wu
  • G. Q. Hu
  • D. Wang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)


This paper proposed a self-adaptive visual control system which is controlled by human eyes, the visual image tracking algorithm utilized by this system is also introduced in this paper. Through eye-gaze detection and electrical device control corresponding, it will automatically respond to the provided interface. This paper mainly introduces helmets and remote vision-based eye-gaze tracking algorithms; the algorithm has good performance in aspects of usability and adaptability.


Eye tracking Eye-gaze Helmet MeanShift algorithm 


  1. 1.
    Wooding, D.S., Mugglestone, M.D., Purdy, K.J., Gale, A.G.: Eye movements of large populations: I. implementation and performance of an autonomous public eye tracker. Behav. Res. Methods Instrum. Comput. 34(4), 509–517 (2002)CrossRefGoogle Scholar
  2. 2.
    Comaniciu, D., Meer, P.: MeanShift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  3. 3.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–575 (2003)CrossRefGoogle Scholar
  4. 4.
    Javed, A., Aslam, Z.: An intelligent alarm based visual eye tracking algorithm for cheating free examination system. Int. J. Intell. Syst. Appl. (IJISA) 5(10), 86–92 (2013). Scholar
  5. 5.
    Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using MeanShift, pp. 142–149 (2000)Google Scholar
  6. 6.
    Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust mean-shift tracking with corrected background-weighted histogram. Comput. Vis. IET 6(1), 62–69 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kailath, T.: The divergence and bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15, 52–60 (1967)CrossRefGoogle Scholar
  8. 8.
    Lipton, A.J., Fujiyoshi, H., Patil, R.S.: Moving target classification and tracking from real-time video. In: IEEE Workshop on Applications of Computer Vision, Princeton, pp. 8–14 (1998)Google Scholar
  9. 9.
    Pu, X., Zhou, Z.: A more robust MeanShift tracker on joint color-CLTP histogram. Int. J. Image Graph. Signal Process. (IJIGSP) 4(12), 34–42 (2012). Scholar
  10. 10.
    McKenna, S.J., Raja, Y., Gong, S.: Tracking color objects using adaptive mixture models. Image Vis. Comput. 17, 223–229 (1999)CrossRefGoogle Scholar
  11. 11.
    Paragios, N., Deriche, R.: Geodesic active regions for motion estimation and tracking. In: IEEE International Conference on Computer Vision, Kerkyra, Greece, pp. 688–674 (1999)Google Scholar
  12. 12.
    Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least squares fitting of ellipses. IEEE Trans. PAMI 21, 476–480 (1999)CrossRefGoogle Scholar
  13. 13.
    Snekha, S.C., Birok, R., et al.: Real time object tracking using different MeanShift techniques–a review. Int. J. Soft Comput. Eng. (IJSCE) 3(3), 98–102 (2013). ISSN 2231-2307Google Scholar
  14. 14.
    Jatoth, R.K., Gopisetty, S., Hussain, M.: Performance analysis of Alpha Beta filter, Kalman filter and MeanShift for object tracking in video sequences. Int. J. Image Graph. Signal Process. (IJIGSP) 7(3), 24–30 (2015). Scholar
  15. 15.
    Kim, P., Chang, H., Song, D., et al.: Fast support vector data description using k-means clustering. In: Advances in Neural Networks, pp. 506–514 (2007)Google Scholar
  16. 16.
    Dong, Y., Jae, K., Bang Rae, L., et al.: Non-contact eye gaze tracking system by mapping of corneal reflections. In: Proceeding of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, vol. 5, pp. 94–99 (2002)Google Scholar
  17. 17.
    Jahangir Alam, S.M.: Based on Arithmetic Study of Image Processing and Recognition for Mosquito Detecting and Position Tracking. Xiamen University (2014)Google Scholar
  18. 18.
    Mallikarjuna Rao, G., Satyanarayana, C.: Object tracking system using approximate median filter, Kalman filter and dynamic template matching. Int. J. Intell. Syst. Appl. (IJISA) 6(5), 83–89 (2014). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.South China University of TechnologyGuangzhouChina
  2. 2.Guangzhou Huashang Vocational CollegeGuangzhouChina

Personalised recommendations