Stegoalgorithm Resistant to Compression

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

In this paper, we propose a choice of parameters for constructing an efficient stegoalgorithm that is resistant to compression. In order to preserve the reliability of perception of formed stegoimage, we analyze changes of second singular value number for different compression coefficients Q = {70, 80, 90, 100}. Experimental results show that we can choose second singular value number as one of the parameters. In the paper, authors proposed the efficient stegoalgorithm resistant to compression with different quality of compression. It was added a condition that allows to decode the information if the block is close to the maximum border of the range of brightness values 255. It was done the rate of reliability of perception and normalized cross-correlation coefficient.

Keywords

Stegoalgorithm Singular value decomposition Resistant to compression Additional information Watermark 

References

  1. 1.
    Dixit, A., Dixit, R.: A review on digital image watermarking techniques. Int. J. Image Graph. Sig. Process. (IJIGSP) 9(4), 56–66 (2017).  https://doi.org/10.5815/ijigsp.2017.04.07CrossRefGoogle Scholar
  2. 2.
    Das, S., Banerjee, M., Chaudhuri, A.: An improved DCT based image watermarking robust against JPEG compression and other attacks. Int. J. Image Graph. Sig. Process. (IJIGSP) 9(9), 40–50 (2017).  https://doi.org/10.5815/ijigsp.2017.09.05CrossRefGoogle Scholar
  3. 3.
    Singh, S., Siddiqui, T.J.: Copyright protection for digital images using singular value decomposition and integer wavelet transform. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 8(4), 14–21 (2016).  https://doi.org/10.5815/ijcnis.2016.04.02CrossRefGoogle Scholar
  4. 4.
    Mander, K., Jindal, H.: An improved image compression-decompression technique using block truncation and wavelets. Int. J. Image Graph. Sig. Process. (IJIGSP) 9(8), 17–29 (2017).  https://doi.org/10.5815/ijigsp.2017.08.03CrossRefGoogle Scholar
  5. 5.
    Chanu, Y.J., Singh, K.M., Tuithung, T.: A robust steganographic method based on singular value decomposition. Int. J. Inf. Comput. Technol. 4(7), 717–726 (2014)Google Scholar
  6. 6.
    Kobozeva, A.A., Melnyk, M.A.: Formalnyie usloviya obespecheniya ustoychivosti steganometoda k szhatiyu. Suchasna spetsialna tehnika 4, 60–69 (2012). (in Russian)Google Scholar
  7. 7.
    Kobozeva, A.A., Melnyk, M.A.: Formalnyie usloviya obespecheniya ustoychivosti steganometoda k szhatiyu i ih realizaciya v novom steganoalgoritme, problems of regional energetic. Electron. J. Acad. Sci. Repub. Moldova 21(1), 93–102 (2013). (in Russian)Google Scholar
  8. 8.
    Kobozeva, A.A., Kozina, M.A.: Steganography method to provide the integrity and authenticity of data transmitted, problems of regional energetic. Electron. J. Acad. Sci. Repub. Moldova 26(3), 93–106 (2014)Google Scholar
  9. 9.
    Кozina, M.O., Njike Amougou, S.M.: Steganography method of embedding information with singular value decomposition. In: Legal, Regulatory and Metrological Support Information Security System in Ukraine, No. 2, pp. 56–61 (2016)Google Scholar
  10. 10.
    Kozin, A., Papkovskaya, O., Kozina, M.: Steganography method using Hartley transform. In: XIII International Conference Modern Problem of Radio Engineering, Telecommunications, and Computer Science (TCSET 2016), pp. 473–475 (2016)Google Scholar
  11. 11.
    Hogben, L., Brualdi, R., Greenbaum, A.: Handbook of Linear Algebra, 1904 p. (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Kozina
    • 1
  • A. B. Kozin
    • 2
  • O. B. Papkovskaya
    • 1
  1. 1.Odessa National Politechhic UniversityOdessaUkraine
  2. 2.National University “Odessa Academy of Law”OdessaUkraine

Personalised recommendations