Influence of the Deep Spherical Dimple on the Pressure Field Under the Turbulent Boundary Layer

  • V. A. Voskoboinick
  • V. N. Turick
  • O. A. Voskoboinyk
  • A. V. Voskoboinick
  • I. A. Tereshchenko
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

The influence of a local dimple in the form of a deep spherical cavity on the pressure field inside the dimple and its vicinity for the turbulent flow regime is experimentally determined. Specific features of the vortex formation inside the dimple are established and the influences of vortex structures that are ejected outward from the spherical dimple on the structure of the turbulent boundary layer are shown. The antiphase oscillations of the wall pressure fluctuation field occur in the halves of the dimple separated by a longitudinal axial plane when the vortex flow “switches” from one side of the dimple to another. The spectral components of the wall pressure fluctuations on the streamlined surface of the spherical dimple have discrete components corresponding to the frequencies of the “switching” of the vortex formation inside the dimple (St ≈ 0.003), the frequencies of the vortex ejections from the dimple (St ≈ 0.05) and the frequencies of the self-oscillations of the shear layer (St ≈ 0.4).

Keywords

Spherical dimple Vortex structure Wall pressure fluctuations 

References

  1. 1.
    Khalatov, A.A.: Heat transfer and fluid mechanics over surface indentations (dimples). National Academy of Sciences of Ukraine, Institute of Engineering Thermophysics, Kyiv (2005)Google Scholar
  2. 2.
    Khadivi, T., Savory, E.: Effect of yaw angle on the flow structure of low aspect ratio elliptical cavities. J. Aerosp. Eng. 232(4), 04017002 (2017)CrossRefGoogle Scholar
  3. 3.
    Voskoboinick, V., Kornev, N., Turnow, J.: Study of near wall coherent flow structures on dimpled surfaces using unsteady pressure measurements. Flow Turbul. Combust 90(4), 709–722 (2013)CrossRefGoogle Scholar
  4. 4.
    Mori, Y., Kobayashi, T., Tahara, K.: Sorting of acrylonitrile-butadiene-styrene and polystyrene plastics by microwave cavity resonance. Int. J. Wireless Microwave Technol. (IJWMT) 6(2), 1–9 (2016). https://doi.org/10.5815/ijwmt.2016.02.01CrossRefGoogle Scholar
  5. 5.
    Sharma, S., Kaur, D.: Measurements of dielectric parameters of aviation fuel at X-band frequencies using cavity perturbation technique. Int. J. Wireless Microwave Technol. (IJWMT) 6(6), 48–55 (2016). https://doi.org/10.5815/ijwmt.2016.06.05CrossRefGoogle Scholar
  6. 6.
    Voskoboinick, V.A., Makarenkov, A.P.: Spectral characteristics of the hydrodynamical noise in a longitudinal flow around a flexible cylinder. Intern. J. Fluid Mech. 31(1), 87–100 (2004)CrossRefGoogle Scholar
  7. 7.
    Voskoboinick, V.A., Grinchenko, V.T., Makarenkov, A.P.: Pseudo-sound behind an obstacle on a cylinder in axial flow. Intern. J. Fluid Mech. 32(4), 488–510 (2005)CrossRefGoogle Scholar
  8. 8.
    Turnow, J., Kornev, N., Isaev, S., Hassel, E.: Vortex mechanism of heat transfer enhancement in a channel with spherical and oval dimples. Heat Mass Transf. 47(3), 301–313 (2011)CrossRefGoogle Scholar
  9. 9.
    Terekhov, V.I., Kalinina, S.V., Mshvidobadze, YuM: Experimental research of flow development in channal with halfspherical cavity. Sib. Phys-Tekhn. J. 1, 77–86 (1992). (in Russian)Google Scholar
  10. 10.
    Voskoboinick, V.A.: Pressure distribution on streamlined surface with spherical dimple. Water Transp. 18(3), 90–96 (2014). (in Russian)Google Scholar
  11. 11.
    Voskoboinick, A.V., Voskoboinick, V.A., Isaev, S.A., Zhdanov, V.L., Kornev, N.V., Turnow, J.: Vortex flow bifurcation inside the spherical dimple in a narrow channel. Appl. Hydromech. 13(4), 17–27 (2011). (in Russian)Google Scholar
  12. 12.
    Bull, M.K.: Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vibr. 190(3), 299–315 (1996)CrossRefGoogle Scholar
  13. 13.
    Goshvarpour, A., Shamsi, M., Goshvarpour, A.: Spectral and time based assessment of meditative heart rate signals. Int. J. Image Graph. Signal Process. (IJIGSP) 5(4), 1–10 (2013). https://doi.org/10.5815/ijigsp.2013.04.01CrossRefGoogle Scholar
  14. 14.
    Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures. Willey, New York (1986)MATHGoogle Scholar
  15. 15.
    Elnashar, A.I., El-Zoghdy, S.F.: An Algorithm for static tracing of message passing interface programs using data flow analysis. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 7(1), 1–8 (2015). https://doi.org/10.5815/ijcnis.2015.01.01Google Scholar
  16. 16.
    Tsuji, Y., Marusic, I., Johansson, A.V.: Amplitude modulation of pressure in turbulent boundary layer. Int. J. Heat Fluid Flow 61, 2–11 (2016)CrossRefGoogle Scholar
  17. 17.
    Blake, W.K.: Mechanics of Flow-Induced Sound and Vibration, vol. 2. Academic Press, New York (1986)MATHGoogle Scholar
  18. 18.
    Doisy, Y.: Modelling wall pressure fluctuations under a turbulent boundary layer. J. Sound Vib. 400, 178–200 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Voskoboinick
    • 1
  • V. N. Turick
    • 2
  • O. A. Voskoboinyk
    • 1
  • A. V. Voskoboinick
    • 1
  • I. A. Tereshchenko
    • 2
  1. 1.Institute of Hydromechanics of NAS of UkraineKyivUkraine
  2. 2.Kyiv Polytechnic InstituteNational Technical University of UkraineKyivUkraine

Personalised recommendations