Skip to main content

Monitoring of Laser Welding Process Using Its Acoustic Emission Signal

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education (ICCSEEA 2018)

Abstract

Processing and identification of signals informatively characterizing any technological process, especially the signals of acoustic and electromagnetic emission, is a complex multi-level task. Many studies are devoted to solving it. However, no comprehensive system for analyzing these signals has been represented yet. This study found out that there is a relationship between the parameters of laser welding technological process and registered acoustic emission signals, and that relationship is independent on investigation methods. The signals of acoustic and electromagnetic emission have been chosen as feedback signals of laser welding technological process, because their transmission and analysis require minimal time and computational resources. The paper describes the peculiarities of channels shielding for transmitting the technological data, in particular, the circuits of applying the shields for electromagnetic protection are given and their efficiency is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borkar, P., Malik, L.G.: Acoustic signal based traffic density state estimation using SVM. Int. J. Image Graph. Sig. Process. (IJIGSP) 5(8), 37–44 (2013). https://doi.org/10.5815/ijigsp.2013.08.05

    Article  Google Scholar 

  2. Jager, M., Humbert, S., Hamprecht, F.A.: Sputter tracking for the automatic monitoring of industrial laser-welding processes. IEEE Trans. Industr. Electron. 55(5), 2177–2184 (2008)

    Article  Google Scholar 

  3. Nagashree, R.N., Aswini, N.: Approaches of buried object detection technology. Int. J. Wirel. Microwave Technol. (IJWMT) 4(2), 31–37 (2014). https://doi.org/10.5815/ijwmt.2014.02.04

    Article  Google Scholar 

  4. Sheela Selvakumari, N.A., Radha, V.: Voice pathology identification: a survey on voice disorder. Int. J. Eng. Manuf. (IJEM) 7(2), 39–49 (2017). https://doi.org/10.5815/ijem.2017.02.04

  5. Bahoura, M.: Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes. Comput. Biol. Med. 39(9), 824–843 (2009)

    Article  Google Scholar 

  6. Huang, C.J., Yang, Y.J., Yang, D.X., Chen, Y.J.: Frog classification using machine learning techniques. Expert Syst. Appl. 36(2), 3737–3743 (2009)

    Article  Google Scholar 

  7. Mporas, I., Ganchev, T., Kocsis, O., Fakotakis, N., Jahn, O., Riede, K.: Integration of temporal contextual information for robust acoustic recognition of bird species from real-field data. Int. J. Intell. Syst. Appl. (IJISA) 5(7), 9–15 (2013). https://doi.org/10.5815/ijisa.2013.07.02

    Article  Google Scholar 

  8. Loutas, T.H., Sotiriades, G., Kalaitzoglou, I., Kostopoulos, V.: Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements. Appl. Acoust. 70(9), 1148–1159 (2009)

    Article  Google Scholar 

  9. Anami, B.S., Pagi, V.B.: Acoustic signal based fault detection in motorcycles – a comparative study of classifiers. Int. J. Image Graph. Sig. Process. (IJIGSP) 5(1), 8–15 (2013). https://doi.org/10.5815/ijigsp.2013.01.02

    Article  Google Scholar 

  10. Ahadi, M., Bakhtiar, M.S.: Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals. Appl. Acoust. 71(7), 634–639 (2010)

    Article  Google Scholar 

  11. Pearson, T.C., Cetin, A.E., Tewfik, A.H., Haff, R.P.: Feasibility of impact-acoustic emissions for detection of damaged wheat kernels. Digit. Sig. Proc. 17(3), 617–633 (2007)

    Article  Google Scholar 

  12. Zhao, Y., Wang, J., Lu, Q., Jiang, R.: Pattern recognition of eggshell crack using PCA and LDA. Innovative Food Sci. Emerg. Technol. 11(3), 520–525 (2010)

    Article  Google Scholar 

  13. Park, Y.W., Park, H., Rhee, S., Kang, M.: Real time estimation of CO2 laser weld quality for automotive industry. Opt. Laser Technol. 34(2), 135–142 (2002)

    Article  Google Scholar 

  14. Conesa, S., Palanco, S., Laserna, J.J.: Acoustic and optical emission during laser-induced plasma formation. Spectrochim. Acta Part B 59(9), 1395–1401 (2004)

    Article  Google Scholar 

  15. Duley, W.W., Mao, Y.L.: The effect of surface condition on acoustic emission during welding of aluminium with CO2 laser radiation. J. Phys. D Appl. Phys. 27(7), 1379–1383 (1994)

    Article  Google Scholar 

  16. de la Rosa, J.G., Puntonet, C.G., Lloret, I.: An application of the independent component analysis to monitor acoustic emission signals generated by termite activity in wood. Measurement 37(1), 63–76 (2005)

    Article  Google Scholar 

  17. Yella, S., Gupta, N.K., Dougherty, M.S.: Comparison of pattern recognition techniques for the classification of impact acoustic emissions. Transp. Res. Part C Emerg. Technol. 15(6), 345–360 (2007)

    Article  Google Scholar 

  18. Saini, D., Floyd, S.: An investigation of gas metal arc welding sound signature for on-line quality control. Weld. J. 77(4), 172–179 (1998)

    Google Scholar 

  19. Molino, A., Martina, M., Vacca, F., Masera, G., Terreno, A., Pasquettaz, G., D’Angelo, G.: FPGA implementation of time-frequency analysis algorithms for laser welding monitoring. Microprocess. Microsyst. 33(3), 179–190 (2009)

    Article  Google Scholar 

  20. Rao, Y., Sarwade, N., Makkar, R.: Denoising and enhancement of medical images using wavelets in LabVIEW. Int. J. Image Graph. Sig. Process. (IJIGSP) 7(11), 42–47 (2015). https://doi.org/10.5815/ijigsp.2015.11.06

  21. Vinoth Kumar, K., Suresh Kumar, S.: LabVIEW based condition monitoring of induction machines. Int. J. Intell. Syst. Appl. (IJISA) 4(3), 56–62 (2012). https://doi.org/10.5815/ijisa.2012.03.08

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artemii Bernatskyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shelyagin, V. et al. (2019). Monitoring of Laser Welding Process Using Its Acoustic Emission Signal. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-91008-6_24

Download citation

Publish with us

Policies and ethics