Advertisement

Monitoring of Laser Welding Process Using Its Acoustic Emission Signal

  • Volodymyr Shelyagin
  • Ievgen Zaitsev
  • Artemii Bernatskyi
  • Vladyslav Khaskin
  • Ivan Shuba
  • Volodymyr Sydorets
  • Oleksandr Siora
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

Processing and identification of signals informatively characterizing any technological process, especially the signals of acoustic and electromagnetic emission, is a complex multi-level task. Many studies are devoted to solving it. However, no comprehensive system for analyzing these signals has been represented yet. This study found out that there is a relationship between the parameters of laser welding technological process and registered acoustic emission signals, and that relationship is independent on investigation methods. The signals of acoustic and electromagnetic emission have been chosen as feedback signals of laser welding technological process, because their transmission and analysis require minimal time and computational resources. The paper describes the peculiarities of channels shielding for transmitting the technological data, in particular, the circuits of applying the shields for electromagnetic protection are given and their efficiency is shown.

Keywords

Laser welding Acoustic emission Signal registration Signal identification Quality Defect detection 

References

  1. 1.
    Borkar, P., Malik, L.G.: Acoustic signal based traffic density state estimation using SVM. Int. J. Image Graph. Sig. Process. (IJIGSP) 5(8), 37–44 (2013).  https://doi.org/10.5815/ijigsp.2013.08.05CrossRefGoogle Scholar
  2. 2.
    Jager, M., Humbert, S., Hamprecht, F.A.: Sputter tracking for the automatic monitoring of industrial laser-welding processes. IEEE Trans. Industr. Electron. 55(5), 2177–2184 (2008)CrossRefGoogle Scholar
  3. 3.
    Nagashree, R.N., Aswini, N.: Approaches of buried object detection technology. Int. J. Wirel. Microwave Technol. (IJWMT) 4(2), 31–37 (2014).  https://doi.org/10.5815/ijwmt.2014.02.04CrossRefGoogle Scholar
  4. 4.
    Sheela Selvakumari, N.A., Radha, V.: Voice pathology identification: a survey on voice disorder. Int. J. Eng. Manuf. (IJEM) 7(2), 39–49 (2017).  https://doi.org/10.5815/ijem.2017.02.04
  5. 5.
    Bahoura, M.: Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes. Comput. Biol. Med. 39(9), 824–843 (2009)CrossRefGoogle Scholar
  6. 6.
    Huang, C.J., Yang, Y.J., Yang, D.X., Chen, Y.J.: Frog classification using machine learning techniques. Expert Syst. Appl. 36(2), 3737–3743 (2009)CrossRefGoogle Scholar
  7. 7.
    Mporas, I., Ganchev, T., Kocsis, O., Fakotakis, N., Jahn, O., Riede, K.: Integration of temporal contextual information for robust acoustic recognition of bird species from real-field data. Int. J. Intell. Syst. Appl. (IJISA) 5(7), 9–15 (2013).  https://doi.org/10.5815/ijisa.2013.07.02CrossRefGoogle Scholar
  8. 8.
    Loutas, T.H., Sotiriades, G., Kalaitzoglou, I., Kostopoulos, V.: Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements. Appl. Acoust. 70(9), 1148–1159 (2009)CrossRefGoogle Scholar
  9. 9.
    Anami, B.S., Pagi, V.B.: Acoustic signal based fault detection in motorcycles – a comparative study of classifiers. Int. J. Image Graph. Sig. Process. (IJIGSP) 5(1), 8–15 (2013).  https://doi.org/10.5815/ijigsp.2013.01.02CrossRefGoogle Scholar
  10. 10.
    Ahadi, M., Bakhtiar, M.S.: Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals. Appl. Acoust. 71(7), 634–639 (2010)CrossRefGoogle Scholar
  11. 11.
    Pearson, T.C., Cetin, A.E., Tewfik, A.H., Haff, R.P.: Feasibility of impact-acoustic emissions for detection of damaged wheat kernels. Digit. Sig. Proc. 17(3), 617–633 (2007)CrossRefGoogle Scholar
  12. 12.
    Zhao, Y., Wang, J., Lu, Q., Jiang, R.: Pattern recognition of eggshell crack using PCA and LDA. Innovative Food Sci. Emerg. Technol. 11(3), 520–525 (2010)CrossRefGoogle Scholar
  13. 13.
    Park, Y.W., Park, H., Rhee, S., Kang, M.: Real time estimation of CO2 laser weld quality for automotive industry. Opt. Laser Technol. 34(2), 135–142 (2002)CrossRefGoogle Scholar
  14. 14.
    Conesa, S., Palanco, S., Laserna, J.J.: Acoustic and optical emission during laser-induced plasma formation. Spectrochim. Acta Part B 59(9), 1395–1401 (2004)CrossRefGoogle Scholar
  15. 15.
    Duley, W.W., Mao, Y.L.: The effect of surface condition on acoustic emission during welding of aluminium with CO2 laser radiation. J. Phys. D Appl. Phys. 27(7), 1379–1383 (1994)CrossRefGoogle Scholar
  16. 16.
    de la Rosa, J.G., Puntonet, C.G., Lloret, I.: An application of the independent component analysis to monitor acoustic emission signals generated by termite activity in wood. Measurement 37(1), 63–76 (2005)CrossRefGoogle Scholar
  17. 17.
    Yella, S., Gupta, N.K., Dougherty, M.S.: Comparison of pattern recognition techniques for the classification of impact acoustic emissions. Transp. Res. Part C Emerg. Technol. 15(6), 345–360 (2007)CrossRefGoogle Scholar
  18. 18.
    Saini, D., Floyd, S.: An investigation of gas metal arc welding sound signature for on-line quality control. Weld. J. 77(4), 172–179 (1998)Google Scholar
  19. 19.
    Molino, A., Martina, M., Vacca, F., Masera, G., Terreno, A., Pasquettaz, G., D’Angelo, G.: FPGA implementation of time-frequency analysis algorithms for laser welding monitoring. Microprocess. Microsyst. 33(3), 179–190 (2009)CrossRefGoogle Scholar
  20. 20.
    Rao, Y., Sarwade, N., Makkar, R.: Denoising and enhancement of medical images using wavelets in LabVIEW. Int. J. Image Graph. Sig. Process. (IJIGSP) 7(11), 42–47 (2015).  https://doi.org/10.5815/ijigsp.2015.11.06
  21. 21.
    Vinoth Kumar, K., Suresh Kumar, S.: LabVIEW based condition monitoring of induction machines. Int. J. Intell. Syst. Appl. (IJISA) 4(3), 56–62 (2012).  https://doi.org/10.5815/ijisa.2012.03.08CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Volodymyr Shelyagin
    • 1
  • Ievgen Zaitsev
    • 1
  • Artemii Bernatskyi
    • 1
  • Vladyslav Khaskin
    • 1
  • Ivan Shuba
    • 1
  • Volodymyr Sydorets
    • 1
  • Oleksandr Siora
    • 1
  1. 1.E.O. Paton Electric Welding Institute of the NAS of UkraineKyivUkraine

Personalised recommendations