Skip to main content

Building a Generalized Peres Gate with Multiple Control Signals

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education (ICCSEEA 2018)

Abstract

We consider a physical realization of the generalized quantum Peres and Toffoli gates with n-control signals, implemented in a one-dimensional chain of nuclear spins (one half) in a strong magnetic field coupled by an Ising interaction. Quantum algorithms in such system can be performed by transverse electromagnetic radio-frequency field using a number of resonant π-pulses on the initial states. The maximum number of π-pulses needed for the implementation of the Peres gate with n-control signals is discussed. It is found, that required number of π-pulses linearly scales with the number n of the control signals of the generalized quantum Peres gate. Comparison of our studies with the known values of the quantum cost of the generalized Peres gate allows us to suggest that proposed physical implementation of the gate is more efficient. The fidelity parameter is used to study the performance of the generalized Peres gate as a function of the relative error of the resonance frequency. The limits of an imbalance of the generator settings remaining the gate well defined are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank, M.P.: Foundations of generalized reversible computing. In: Reversible Computation, RC 2017. LNCS, vol. 10301, pp. 19–34. Springer, Cham (2017)

    Chapter  Google Scholar 

  2. Drechsler, R., Wille, R.: Reversible circuits: recent accomplishments and future challenges for an emerging technology. In: Progress in VLSI Design and Test, pp. 383–392. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Landauer, R.: Irreversibility and heat generation in the computational process. IBM J. Res. Develop. 5(1/2), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Develop. 17(6), 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  5. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Blatt, R.: Quantum information processing with trapped ions. In: Quantum Information and Measurement, p. Th1.1 (2013)

    Google Scholar 

  7. Deibuk, V.G., Biloshytskyi, A.V.: Design of a ternary reversible/quantum adder using genetic algorithm. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 7(9), 38–45 (2015). https://doi.org/10.5815/ijitcs.2015.09.06

    Article  Google Scholar 

  8. Berman, G.P., Doolen, G.D., Holm, D.D., Tsifrinovich, V.I.: Quantum computer on a class of one-dimensional Ising systems. Phys. Lett. A 193(5–6), 444–450 (1994)

    Article  Google Scholar 

  9. Kane, B.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)

    Article  Google Scholar 

  10. Lopez, G.V., Lara, L.: Numerical simulation of controlled-controlled-not (CCN) quantum gate in a chain of three interacting nuclear spins system. J. Phys. B Atom. Opt. Mol. Phys. 39(9), 3897–3904 (2006)

    Article  Google Scholar 

  11. Bilal, B., Ahmed, S., Kakkar, V.: Optimal realization of universality of Peres gate using explicit interaction of cells in quantum dot cellular automata nanotechnology. Int. J. Intell. Syst. Appl. (IJISA) 9(6), 75–84 (2017). https://doi.org/10.5815/ijisa.2017.06.08

    Article  Google Scholar 

  12. Szyprowski, M., Kerntopf, P.: Low quantum cost realization of generalized Peres and Toffoli gates with multiple-control signals. In: Proceedings of the 13th IEEE International Conference on Nanotechnology, Beijing, China, pp. 802–807 (2013)

    Google Scholar 

  13. Moraga, C.: Multiple mixed control signals for reversible Peres gates. Electron. Lett. 50(14), 987–989 (2014)

    Article  Google Scholar 

  14. Berman, G.P., Doolen, G.D., Tsifrinovich, V.I.: Solid-state quantum computation – a new direction for nanotechnology. Superlattices Microstruct. 27(2/3), 89–104 (2000)

    Article  Google Scholar 

  15. Gorin, T., Lara, L., López, G.V.: Simulation of static and random errors on Grover’s search algorithm implemented in an Ising nuclear spin chain quantum computer with a few qubits. J. Phys. B: Atom. Mol. Opt. Phys. 43(8), 085508 (2010). (9 pages)

    Article  Google Scholar 

  16. Mendonça, P.E.M., Napolitano, R.D.J., Marchiolli, M.A., Foster, C.J., Liang, Y.-C.: Alternative fidelity measure between quantum states. Phys. Rev. A 78(5), 052330 (2008)

    Google Scholar 

  17. Moghimi, S., Reshadinezhad, M.R.: A novel 4 × 4 universal reversible gate as a cost efficient full adder/subtractor in terms of reversible and quantum metrics. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 7(11), 28–34 (2015). https://doi.org/10.5815/ijmecs.2015.11.04

    Article  Google Scholar 

  18. Thakral, S., Bansal, D.: Novel reversible DS gate for reversible logic synthesis. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 8(6), 20–26 (2016). https://doi.org/10.5815/ijmecs.2016.06.03

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Deibuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rozhdov, O.I., Yuriychuk, I.M., Deibuk, V.G. (2019). Building a Generalized Peres Gate with Multiple Control Signals. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-91008-6_16

Download citation

Publish with us

Policies and ethics