Skip to main content

Towards Spectrum Sharing in Virtualized Networks: A Survey and an Outlook

  • Chapter
  • First Online:

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

Spectrum sharing and management constitute an important tool for alleviating the problem of spectrum scarcity and underutilization. For 5G networks, a number of spectrum sharing schemes are currently under consideration, which differ significantly from the traditional approaches, namely, exclusive access and unlicensed access. The choice of spectrum sharing scheme has a significant impact on the virtualization aspects of the network. This chapter discusses spectrum sharing and its ramifications on the architecture of virtualized wireless networks. We provide a survey of important spectrum sharing schemes and discuss their pros and cons from a 5G perspective. This is followed by an up-to-date account of regulatory aspects and field trials of the important spectrum sharing schemes. The main challenges pertinent to spectrum sharing in virtualized networks are identified. Furthermore, we discuss an architecture for enabling efficient spectrum management and network virtualization in multi-operator 5G networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (June 2014) What will 5g be? IEEE J Sel Areas Commun 32(6):1065–1082

    Article  Google Scholar 

  2. Costa-Perez X, Swetina J, Guo T, Mahindra R, Rangarajan S (2013) Radio access network virtualization for future mobile carrier networks. IEEE Commun Mag 51(7):27–35

    Article  Google Scholar 

  3. Rost P, Berberana I, Maeder A, Paul H, Suryaprakash V, Valenti M, Wbben D, Dekorsy A, Fettweis G (2015) Benefits and challenges of virtualization in 5g radio access networks. IEEE Commun Mag 53(12):75–82

    Article  Google Scholar 

  4. Liang C, Yu FR (2015) Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun Surv Tutorials 17(1):358–380

    Article  Google Scholar 

  5. Irnich T, Kronander J, Seln Y, Li G (2013), Spectrum sharing scenarios and resulting technical requirements for 5g systems. In: Personal, indoor and mobile radio communications (PIMRC Workshops), 2013 I.E. 24th international symposium on, pp 127–132

    Google Scholar 

  6. Kliks A, Holland O, Basaure A, Matinmikko M (2015) Spectrum and license flexibility for 5g networks. IEEE Commun Mag 53(7):42–49

    Article  Google Scholar 

  7. Kryszkiewicz P, Kliks A, Bogucka H (2016) Small-scale spectrum aggregation and sharing. IEEE J Sel Areas Commun 34(10):2630–2641

    Article  Google Scholar 

  8. Mitola J, Guerci J, Reed J, Yao YD, Chen Y, Clancy TC, Dwyer J, Li H, Man H, McGwier R, Guo Y (2014) Accelerating 5g qoe via public-private spectrum sharing. IEEE Commun Mag 52(5):77–85

    Article  Google Scholar 

  9. Khan A, Kellerer W, Kozu K, Yabusaki M (2011) Network sharing in the next mobile network: Tco reduction, management flexibility, and operational independence. IEEE Commun Mag 49(10):134–142

    Article  Google Scholar 

  10. Meddour D-E, Rasheed T, Gourhant Y (2011) On the role of infrastructure sharing for mobile network operators in emerging markets. Comput Netw 55(7):1576–1591, recent Advances in Network Convergence

    Article  Google Scholar 

  11. Sugathapala I, Kovacevic I, Lorenzo B, Glisic S, Fang Y (2015) Quantifying benefits in a business portfolio for multi-operator spectrum sharing. IEEE Trans Wirel Commun 14(12):6635–6649

    Article  Google Scholar 

  12. Wang N, Gao Y, Evans B (2015) Database-augmented spectrum sensing algorithm for cognitive radio. In: Communications (ICC), 2015 I.E. international conference on, IEEE, pp 7468–7473

    Google Scholar 

  13. Chowdhery A, Chandra R, Garnett P, Mitchell P (2012) Characterizing spectrum goodness for dynamic spectrum access. In: Communication, control, and computing (Allerton), 2012 50th annual Allerton conference on, IEEE, pp 1360–1367

    Google Scholar 

  14. Li Y (2015) Grass-root based spectrum map database for self-organized cognitive radio and heterogeneous networks: spectrum measurement, data visualization, and user participating model. In: Wireless Communications and Networking Conference (WCNC), 2015 IEEE, IEEE, pp 117–122

    Google Scholar 

  15. Denkovski D, Rakovic V, Pavloski M, Chomu K, Atanasovski V, Gavrilovska L (2012) Integration of heterogeneous spectrum sensing devices towards accurate rem construction. In: Wireless Communications and Networking Conference (WCNC), IEEE, IEEE, pp 798–802

    Google Scholar 

  16. Jorswieck EA, Badia L, Fahldieck T, Karipidis E, Luo J (2014) Spectrum sharing improves the network efficiency for cellular operators. IEEE Commun Mag 52(3):129–136

    Article  Google Scholar 

  17. RSPG (2011) Report on collective use of spectrum (cus) and other spectrum sharing approaches. Radio Spectrum Policy Group, Tech. Rep. 11-392

    Google Scholar 

  18. PCAST (2012) Realizing the full potential of government-held spectrum to spur economic growth. Presidents Council of Advisors on Science and Technology Report, Tech. Rep

    Google Scholar 

  19. Holland O, De Nardis L, Nolan K, Medeisis A, Anker P, Minervini LF, Velez F, Matinmikko M, Sydor J (2012) Pluralistic licensing. In: Dynamic Spectrum Access Networks (DYSPAN), 2012 I.E. international symposium on, IEEE, pp 33–41

    Google Scholar 

  20. Chen Q, Yu G, Yin R, Maaref A, Li GY, Huang A (2015) Energy- efficient resource block allocation for licensed-assisted access. In: Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 I.E. 26th annual international symposium on, IEEE, pp 1018–1023

    Google Scholar 

  21. Lien S-Y, Lee J, Liang Y-C (2016) Random access or scheduling: Optimum LTE licensed-assisted access to unlicensed spectrum. IEEE Commun Lett 20(3):590–593

    Article  Google Scholar 

  22. Ratasuk R, Mangalvedhe N, Ghosh A (2014) LTE in unlicensed spectrum using licensed-assisted access. In: Globecom Workshops (GC Wkshps), IEEE, 2014, pp 746–751

    Google Scholar 

  23. Li Y, Zheng J, Li Q (2015) Enhanced listen-before-talk scheme for frequency reuse of licensed-assisted access using LTE. In: Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 I.E. 26th annual international symposium on, IEEE, pp 1918–1923

    Google Scholar 

  24. Ibars C, Bhorkar A, Papathanassiou A, Zong P (2015) Channel selection for licensed assisted access in LTE based on UE measurements. In: Vehicular Technology Conference (VTC Fall), 2015 I.E. 82nd. IEEE, pp 1–5

    Google Scholar 

  25. Liu F, Bala E, Erkip E, Beluri MC, Yang R (2015) Small-cell traffic balancing over licensed and unlicensed bands. Veh Technol, IEEE Trans 64(12):5850–5865

    Article  Google Scholar 

  26. Singh B, Hailu S, Koufos K, Dowhuszko AA, Tirkkonen O, Jntti R, Berry R (2015) Coordination protocol for inter-operator spectrum sharing in co-primary 5g small cell networks. IEEE Commun Mag 53(7):34–40

    Article  Google Scholar 

  27. Agre JR, Gordon KD (2015) A summary of recent federal government activities to promote spectrum sharing. IDA Science and Technology Institute, Tech. Rep

    Google Scholar 

  28. ETSI (2009) Reconfigurable radio systems (RRS); functional architecture (FA) for the management and control of reconfigurable radio systems. Tech. Rep. TR 102.682 v1.1.1

    Google Scholar 

  29. ETSI (2010) Reconfigurable radio systems; cognitive radio concept. Tech. Rep. TR 102.802 v1.1.1

    Google Scholar 

  30. ETSI (2014) System architecture and high level procedures for operation of licensed shared access (LSA) in the 2300-2400 MHz band. Tech. Rep. TS 103.235, v0.0.13

    Google Scholar 

  31. ACMA (2015) Five-year spectrum outlook 2015-2019: the acmas spectrum demand analysis and strategic direction for the next five years. Tech. Rep

    Google Scholar 

  32. Pawelczak P, Nolan K, Doyle L, Oh SW, Cabric D (2011) Cognitive radio: Ten years of experimentation and development. IEEE Commun Mag 49(3):90–100

    Article  Google Scholar 

  33. Matinmikko M, Palola M, Saarnisaari H, Heikkil M, Prokkola J, Kippola T, Hanninen T, Jokinen M, Yrjl S (2013) Cognitive radio trial environment: First live authorized shared access-based spectrum-sharing demonstration. IEEE Veh Technol Mag 8(3):30–37

    Article  Google Scholar 

  34. Palola M, Matinmikko M, Prokkola J, Mustonen M, Heikkil M, Kippola T, Yrjl S, Hartikainen V, Tudose L, Kivinen A, Paavola J, Heiska K. (2014) Live field trial of licensed shared access (LSA) concept using LTE network in 2.3 ghz band. In: Dynamic spectrum access networks (DYSPAN), 2014 I.E. International Symposium on, pp 38–47

    Google Scholar 

  35. Palola M, Matinmikko M, Prokkola J, Mustonen M, Heikkil M, Kippola T, Yrjl S, Hartikainen V, Tudose L, Kivinen A, Paavola J, Heiska K, Hanninen T, Okkonen J (2014), Description of finnish licensed shared access (LSA) field trial using TD-LTE in 2.3 ghz band. In: Dynamic Spectrum Access Networks (DYSPAN), 2014 I.E. international symposium on, pp 374–375

    Google Scholar 

  36. Palolo M, Rautio T, Matinmikko M, Prokkola J, Mustonen M, Heikkil M, Kippola T, Yrjl S, Hartikainen V, Tudose L, Kivinen A, Paavola J, Okkonen J, Mkelinen M, Hnninen T, Kokkinen H (2014) Licensed shared access (LSA) trial demonstration using real LTE network. In: Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2014 9th international conference on, pp 498–502

    Google Scholar 

  37. Matinmikko M, Palola M, Mustonen M, Rautio T, Heikkil M, Kippola T, Yrjl S, Hartikainen V, Tudose L, Kivinen A, Kokkinen H, Mkelinen M (2015), Field trial of licensed shared access (LSA) with enhanced LTE resource optimization and incumbent protection. In: Dynamic Spectrum Access Networks (DySPAN), 2015 I.E. international symposium on, pp 263–264

    Google Scholar 

  38. LSA implementation. [Online]. Available: http://www.cept.org/ecc/topics/lsa-implementation

  39. Ericsson, red technologies and qualcomm inc. conduct the first licensed shared access (LSA) pilot in France. [Online]. Available: http://www.redtechnologies.fr/news/ericsson-red-technologies-and-qualcomm-inc-conduct-first-licensed-shared-access-lsa-

  40. LSA demonstration carried out in the world congress, Barcelona. [Online]. http://www.cept.org/Documents/fm-52/27033/FM52(15)13LSA-Demonstration-carried-out-in-the-Mobile-World-Congress, – Barcelona

  41. Kim CW, Ryoo J, Buddhikot MM (2015) Design and implementation of an end-to-end architecture for 3.5 ghz shared spectrum In: Dynamic Spectrum Access Networks (DySPAN), 2015 I.E. international symposium on, pp 23–34

    Google Scholar 

  42. Goldberg RP (1974) Survey of virtual machine research. Computer 7(9):34–45

    Article  Google Scholar 

  43. Ortiz S (Nov 1997) Virtual private networks: leveraging the internet. Computer 30(11):18–20

    Article  Google Scholar 

  44. Bari MF, Boutaba R, Esteves R, Granville LZ, Podlesny M, Rabbani MG, Zhang Q, Zhani MF (2013) Data center network virtualization: a survey. IEEE Commun Surv Tutorials 15(2):909–928, Second

    Google Scholar 

  45. Lombardi F, Pietro RD (2011) Secure virtualization for cloud computing. J Netw Comput Appl 34(4):1113–1122, advanced Topics in Cloud Computing

    Google Scholar 

  46. Chowdhury NMK, Boutaba R (2010) A survey of network virtualization. Comput Netw 54(5):862–876

    Article  Google Scholar 

  47. Wang X, Krishnamurthy P, Tipper D (2013) Wireless network virtualization. In: Computing, Networking and Communications (ICNC), 2013 International conference on, pp 818–822

    Google Scholar 

  48. Blenk A, Basta A, Reisslein M, Kellerer W (2016) Survey on network virtualization hypervisors for software defined networking. IEEE Commun Surv Tutorials 18(1):655–685 Firstquarter

    Article  Google Scholar 

  49. Akhtar AM, Wang X, Hanzo L (2016) Synergistic spectrum sharing in 5g hetnets: a harmonized sdn-enabled approach. IEEE Commun Mag 54(1):40–47

    Article  Google Scholar 

  50. Zaki Y, Zhao L, Goerg C, Timm-Giel A (2010) LTE wireless virtualization and spectrum management. In: Wireless and Mobile Networking Conference (WMNC), 2010 third joint IFIP, pp 1–6

    Google Scholar 

  51. Wang X, Krishnamurthy P, Tipper D (2015) A collaborative spectrum sharing framework for LTE virtualization. In: 2015 I.E. conference on Collaboration and Internet Computing (CIC), pp 260–269

    Google Scholar 

  52. Gomez MM, Weiss MB (2016) Wireless network virtualization: opportunities for spectrum sharing in the 3.5 ghz band. In: International conference on cognitive radio oriented wireless networks, pp 232–245

    Google Scholar 

  53. Liang C, Yu FR, Zhang X (May 2015) Information-centric network function virtualization over 5g mobile wireless networks. IEEE Netw 29(3):68–74

    Article  Google Scholar 

  54. Yang M, Li Y, Jin D, Yuan J, Su L, Zeng L (2013) Opportunistic spectrum sharing based resource allocation for wireless virtualization. In: Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013 seventh international conference on, pp 51–58

    Google Scholar 

  55. Abdel-Rahman MJ, Cardoso KV, MacKenzie AB, DaSilva LA (2016) Dimensioning virtualized wireless access networks from a common pool of resources. In: 2016 13th IEEE annual Consumer Communications Networking Conference (CCNC), pp 1042–1047

    Google Scholar 

  56. Huang X, Han T, Ansari N (2015) On green-energy-powered cognitive radio networks. IEEE Commun Surv Tutorials 17(2):827–842

    Article  Google Scholar 

  57. Amjad M, Akhtar F, Rehmani MH, Reisslein M, Umer T (2017) Full-duplex communication in cognitive radio networks: a survey. IEEE Commun Surv Tutorials 19(4):2158–2191

    Article  Google Scholar 

  58. Kpojime HO, Safdar GA (2015) Interference mitigation in cognitive-radio-based femtocells. IEEE Commun Surv Tutorials 17(3):1511–1534

    Article  Google Scholar 

  59. Ahmed F, Tirkkonen O, Dowhuszko AA, Juntti M (2014) Distributed power allocation in cognitive radio networks under network power constraint. In: 2014 9th international conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), Oulu, pp 492–497

    Google Scholar 

  60. Ahmed F, Tirkkonen O (2009) Local optimum based power allocation approach for spectrum sharing in unlicensed bands. In: Spyropoulos T, Hummel KA (eds) Proceedings of the 4th IFIP TC 6 International Workshop on Self-Organizing Systems (IWSOS ‘09). Springer, Berlin/Heidelberg, pp 238–243

    Google Scholar 

  61. Amjad M, Rehmani MH, Mao S (2018) Wireless multimedia cognitive radio networks: a comprehensive survey. IEEE Commun Surv Tutorials 20(2):1056–1103

    Google Scholar 

  62. Amjad M, Sharif M, Afzal MK, Kim SW (2016) TinyOS-new trends, comparative views, and supported sensing applications: a review. IEEE Sensors J 16(9):2865–2889

    Article  Google Scholar 

  63. Rashid B, Rehmani MH (2016) Applications of wireless sensor networks for urban areas: a survey. J Netw Comput Appl 60:192–219

    Article  Google Scholar 

  64. Amjad M, Afzal MK, Umer T, Kim BS (2017) QoS-aware and heterogeneously clustered routing protocol for wireless sensor networks. IEEE Access 5:10250–10262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furqan Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, F., Kliks, A., Goratti, L., Khan, S.N. (2019). Towards Spectrum Sharing in Virtualized Networks: A Survey and an Outlook. In: Rehmani, M., Dhaou, R. (eds) Cognitive Radio, Mobile Communications and Wireless Networks. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-91002-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91002-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91001-7

  • Online ISBN: 978-3-319-91002-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics