Skip to main content

Thrombosis and Bleeding in Cancer Patients

  • Chapter
  • First Online:
Book cover The MASCC Textbook of Cancer Supportive Care and Survivorship

Abstract

Cancer patients show a hypercoagulable state with a high risk for thrombosis and pulmonary embolism, due to the malignancy itself as well as various therapies used. Real-world data suggest that the necessary thromboprophylaxis is still underused. In the palliative care setting, patients seem willing to accept the use of subcutaneous low-molecular-weight heparin (LMWH) injections as compared to compression stockings because of the greater efficacy. However, the advent of “direct” or “new” oral anticoagulants (direct oral anticoagulants [DOACs], novel oral anticoagulants, or non-vitamin K oral coagulants [NOACs]) is likely to change the landscape of anticoagulation in cancer patients if the current efficacy and toxicity data are confirmed.

The provident and structured use of blood products in patients undergoing anticancer therapy reduces the need for them including their sequelae. This also reduces the economic strain on this part of the healthcare system. Bleeding complications in cancer patients undergoing surgery are relatively frequent, and novel strategies for perioperative risk stratification and correspondent therapies in cancer patients have been developed. More clinical research is needed to improve our understanding of thrombosis and bleeding in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virchow R. Phlogose und Thrombose im Gefässsystem. In: Müller C, editor. Gesammelte Abhandlungen zur Wissenschaftlichen Medicin. Zweite unveränderte Auflage ed. Hamm: G. Grot'sche Buchhandlung; 1862. p. 458–732.

    Google Scholar 

  2. Trousseau A. Phlegmasia alba dolens. Clinique medicale de l'Hotel-Dien de Paris 1865;3.

    Google Scholar 

  3. Schaffner F, Ruf W. Tissue factor and PAR2 signaling in the tumor microenvironment. Arterioscler Thromb Vasc Biol. 2009;29(12):1999–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lussana F, Caberlon S, Pagani C, Kamphuisen PW, Buller HR, Cattaneo M. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res. 2009;124(4):409–17.

    Article  CAS  PubMed  Google Scholar 

  5. Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R. The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome. Blood. 2009;113(21):5246–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Donnellan E, Kevane B, Bird BR, Ainle FN. Cancer and venous thromboembolic disease: from molecular mechanisms to clinical management. Curr Oncol. 2014;21(3):134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hreinsson JP, Jonasson JG, Bjornsson ES. Bleeding-related symptoms in colorectal cancer: a 4-year nationwide population-based study. Aliment Pharmacol Ther. 2014;39(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  8. Palma Anselmo M, Nobre de Jesus G, Lopes JM, Victorino RM, Meneses Santos J. Massive bleeding as the first clinical manifestation of metastatic prostate cancer due to disseminated intravascular coagulation with enhanced fibrinolysis. Case Reports Hematol. 2016;2016:7217915.

    Article  Google Scholar 

  9. Korte W. Changes of the coagulation and fibrinolysis system in malignancy: their possible impact on future diagnostic and therapeutic procedures. Clin Chem Lab Med. 2000;38(8):679–92.

    Article  CAS  PubMed  Google Scholar 

  10. Ay C, Pabinger I. Predictive potential of haemostatic biomarkers for venous thromboembolism in cancer patients. Thromb Res. 2012;129(Suppl 1):S6–9.

    Article  CAS  PubMed  Google Scholar 

  11. Riedl J, Kaider A, Marosi C, Prager GW, Eichelberger B, Assinger A, et al. Decreased platelet reactivity in patients with cancer is associated with high risk of venous thromboembolism and poor prognosis. Thromb Haemost. 2016;20:117(1).

    Google Scholar 

  12. Ay C, Simanek R, Vormittag R, Dunkler D, Alguel G, Koder S, et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood. 2008;112(7):2703–8.

    Article  CAS  PubMed  Google Scholar 

  13. Ay C, Vormittag R, Dunkler D, Simanek R, Chiriac AL, Drach J, et al. D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol. 2009;27(25):4124–9.

    Article  CAS  PubMed  Google Scholar 

  14. Seitz R, Rappe N, Kraus M, Immel A, Wolf M, Maasberg M, et al. Activation of coagulation and fibrinolysis in patients with lung cancer: relation to tumour stage and prognosis. Blood Coagul Fibrinolysis. 1993;4(2):249–54.

    Article  CAS  PubMed  Google Scholar 

  15. Antoniou D, Pavlakou G, Stathopoulos GP, Karydis I, Chondrou E, Papageorgiou C, et al. Predictive value of D-dimer plasma levels in response and progressive disease in patients with lung cancer. Lung Cancer. 2006;53(2):205–10.

    Article  PubMed  Google Scholar 

  16. Reitter EM, Kaider A, Ay C, Quehenberger P, Marosi C, Zielinski C, et al. Longitudinal analysis of hemostasis biomarkers in cancer patients during antitumor treatment. J Thromb Haemost. 2016;14(2):294–305.

    Article  PubMed  Google Scholar 

  17. Kanda M, Tanaka C, Kobayashi D, Mizuno A, Tanaka Y, Takami H, et al. Proposal of the coagulation score as a predictor for short-term and long-term outcomes of patients with Resectable gastric cancer. Ann Surg Oncol. 2017;24(2):502–9.

    Article  PubMed  Google Scholar 

  18. de Haas EC, Zwart N, Meijer C, Suurmeijer AJ, Meijer K, Guchelaar HJ, et al. Association of PAI-1 gene polymorphism with survival and chemotherapy-related vascular toxicity in testicular cancer. Cancer. 2010;116(24):5628–36.

    Article  CAS  PubMed  Google Scholar 

  19. Tinholt M, Vollan HK, Sahlberg KK, Jernstrom S, Kaveh F, Lingjaerde OC, et al. Tumor expression, plasma levels and genetic polymorphisms of the coagulation inhibitor TFPI are associated with clinicopathological parameters and survival in breast cancer, in contrast to the coagulation initiator TF. Breast Cancer Res. 2015;17:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wada H, Mori Y, Okabayashi K, Gabazza EC, Kushiya F, Watanabe M, et al. High plasma fibrinogen level is associated with poor clinical outcome in DIC patients. Am J Hematol. 2003;72(1):1–7.

    Article  PubMed  Google Scholar 

  21. Riedl J, Hell L, Kaider A, Koder S, Marosi C, Zielinski C, et al. Association of platelet activation markers with cancer-associated venous thromboembolism. Platelets. 2016;27(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  22. Pabinger I, Thaler J, Ay C. Biomarkers for prediction of venous thromboembolism in cancer. Blood. 2013;122(12):2011–8.

    Article  CAS  PubMed  Google Scholar 

  23. Rickles FR, Levine MN. Epidemiology of thrombosis in cancer. Acta Haematol. 2001;106(1–2):6–12.

    Article  CAS  PubMed  Google Scholar 

  24. Veress B, Alafuzoff I. A retrospective analysis of clinical diagnoses and autopsy findings in 3,042 cases during two different time periods. Hum Pathol. 1994;25(2):140–5.

    Article  CAS  PubMed  Google Scholar 

  25. Ogren M, Bergqvist D, Wahlander K, Eriksson H, Sternby NH. Trousseau's syndrome - what is the evidence? A population-based autopsy study. Thromb Haemost. 2006;95(3):541–5.

    Article  CAS  PubMed  Google Scholar 

  26. White RH, Chew HK, Zhou H, Parikh-Patel A, Harris D, Harvey D, et al. Incidence of venous thromboembolism in the year before the diagnosis of cancer in 528,693 adults. Arch Int Med. 2005;165(15):1782–7.

    Article  Google Scholar 

  27. Murchison JT, Wylie L, Stockton DL. Excess risk of cancer in patients with primary venous thromboembolism: a national, population-based cohort study. Br J Cancer. 2004;91(1):92–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005;293(6):715–22.

    Article  CAS  PubMed  Google Scholar 

  29. Jimenez-Zepeda VH, Dominguez-Martinez VJ. Acquired activated protein C resistance and thrombosis in multiple myeloma patients. Thromb J. 2006;4:11.

    Article  CAS  PubMed  Google Scholar 

  30. Tsai J, Abe K, Boulet SL, Beckman MG, Hooper WC, Grant AM. Predictive accuracy of 29-comorbidity index for in-hospital deaths in US adult hospitalizations with a diagnosis of venous thromboembolism. PLoS One. 2013;8(7):e70061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khorana AA, Francis CW, Culakova E, Fisher RI, Kuderer NM, Lyman GH. Thromboembolism in hospitalized neutropenic cancer patients. J Clin Oncol. 2006;24(3):484–90.

    Article  PubMed  Google Scholar 

  32. Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer. 2007;110(10):2339–46.

    Article  PubMed  Google Scholar 

  33. Musallam KM, Dahdaleh FS, Shamseddine AI, Taher AT. Incidence and prophylaxis of venous thromboembolic events in multiple myeloma patients receiving immunomodulatory therapy. Thromb Res. 2009;123(5):679–86.

    Article  CAS  PubMed  Google Scholar 

  34. Otten HM, Mathijssen J, ten Cate H, Soesan M, Inghels M, Richel DJ, et al. Symptomatic venous thromboembolism in cancer patients treated with chemotherapy: an underestimated phenomenon. Arch Intern Med. 2004;164(2):190–4.

    Article  PubMed  Google Scholar 

  35. Chew HK, Wun T, Harvey DJ, Zhou H, White RH. Incidence of venous thromboembolism and the impact on survival in breast cancer patients. J Clin Oncol. 2007;25(1):70–6.

    Article  PubMed  Google Scholar 

  36. von Tempelhoff GF, Heilmann L, Hommel G, Pollow K. Impact of rheological variables in cancer. Semin Thromb Hemost. 2003;29(5):499–513.

    Article  Google Scholar 

  37. Mehta J, Singhal S. Hyperviscosity syndrome in plasma cell dyscrasias. Semin Thromb Hemost. 2003;29(5):467–71.

    Article  PubMed  Google Scholar 

  38. Linenberger ML, Wittkowsky AK. Thromboembolic complications of malignancy. Part 1: risks. Oncology. 2005;19(7):853–61.

    PubMed  Google Scholar 

  39. Zgouras D, Engels K, Lindhoff-Last E. Lymphoplasmacytic lymphoma with Waldenstrom's macroglobulinemia as a reason for peripheral arterial perfusion disorders. Vasa. 2009;38(2):193–6.

    Article  CAS  PubMed  Google Scholar 

  40. Michaud M, Moulis G, Puissant B, Cougoul P, Sailler L. Cryofibrinogenemia and risk of cancer in cryoglobulinemic patients without vasculitis criteria. Eur J Intern Med. 2016;28:e10–2.

    Article  PubMed  Google Scholar 

  41. von Tempelhoff GF, Heilmann L, Hommel G, Schneider D, Niemann F, Zoller H. Hyperviscosity syndrome in patients with ovarian carcinoma. Cancer. 1998;82(6):1104–11.

    Article  Google Scholar 

  42. Sharma K, Puniyani RR, Bhat SV, Advani SH, Hegde U, Rao S. Blood viscosity parameter correlation with types of leukemia. Physiol Chem Phys Med NMR. 1992;24(2):159–64.

    CAS  PubMed  Google Scholar 

  43. Finazzi G. A prospective analysis of thrombotic events in the European collaboration study on low-dose aspirin in polycythemia (ECLAP). Pathol Biol. 2004;52(5):285–8.

    Article  CAS  PubMed  Google Scholar 

  44. Landolfi R, Ciabattoni G, Patrignani P, Castellana MA, Pogliani E, Bizzi B, et al. Increased thromboxane biosynthesis in patients with polycythemia vera: evidence for aspirin-suppressible platelet activation in vivo. Blood. 1992;80(8):1965–71.

    CAS  PubMed  Google Scholar 

  45. De Stefano V, Za T, Rossi E, Fiorini A, Ciminello A, Luzzi C, et al. Influence of the JAK2 V617F mutation and inherited thrombophilia on the thrombotic risk among patients with essential thrombocythemia. Haematologica. 2009;94(5):733–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Borowczyk M, Wojtaszewska M, Lewandowski K, Gil L, Lewandowska M, Lehmann-Kopydlowska A, et al. The JAK2 V617F mutational status and allele burden may be related with the risk of venous thromboembolic events in patients with Philadelphia-negative myeloproliferative neoplasms. Thromb Res. 2015;135(2):272–80.

    Article  CAS  PubMed  Google Scholar 

  47. Arellano-Rodrigo E, Alvarez-Larran A, Reverter JC, Colomer D, Villamor N, Bellosillo B, et al. Platelet turnover, coagulation factors, and soluble markers of platelet and endothelial activation in essential thrombocythemia: relationship with thrombosis occurrence and JAK2 V617F allele burden. Am J Hematol. 2009;84(2):102–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ventura GJ, Hester JP, Smith TL, Keating MJ. Acute myeloblastic leukemia with hyperleukocytosis: risk factors for early mortality in induction. Am J Hematol. 1988;27(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  49. Ostergren J, Fagrell B, Bjorkholm M. Hyperleukocytic effects on skin capillary circulation in patients with leukaemia. J Intern Med. 1992;231(1):19–23.

    Article  CAS  PubMed  Google Scholar 

  50. Khorana AA, Francis CW, Culakova E, Lyman GH. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer. 2005;104(12):2822–9.

    Article  PubMed  Google Scholar 

  51. Simanek R, Vormittag R, Ay C, Alguel G, Dunkler D, Schwarzinger I, et al. High platelet count associated with venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb Haemost. 2010;8(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  52. Riedl J, Kaider A, Reitter EM, Marosi C, Jager U, Schwarzinger I, et al. Association of mean platelet volume with risk of venous thromboembolism and mortality in patients with cancer. Results from the Vienna Cancer and Thrombosis Study (CATS). Thromb Haemost. 2014;111(4):670–8.

    Article  CAS  PubMed  Google Scholar 

  53. Otten TR, Stein PD, Patel KC, Mustafa S, Silbergleit A. Thromboembolic disease involving the superior vena cava and brachiocephalic veins. Chest. 2003;123(3):809–12.

    Article  PubMed  Google Scholar 

  54. Hiraiwa K, Morozumi K, Miyazaki H, Sotome K, Furukawa A, Nakamaru M, et al. Isolated splenic vein thrombosis secondary to splenic metastasis: a case report. World J Gastroenterol. 2006;12(40):6561–3.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bergqvist D. Venous thromboembolism: a review of risk and prevention in colorectal surgery patients. Dis Colon Rectum. 2006;49(10):1620–8.

    Article  PubMed  Google Scholar 

  56. Fernandez PM, Patierno SR, Rickles FR. Tissue factor and fibrin in tumor angiogenesis. Semin Thromb Hemost. 2004;30(1):31–44.

    Article  CAS  PubMed  Google Scholar 

  57. Sakuma M, Fukui S, Nakamura M, Takahashi T, Kitamukai O, Yazu T, et al. Cancer and pulmonary embolism: thrombotic embolism, tumor embolism, and tumor invasion into a large vein. Circ J. 2006;70(6):744–9.

    Article  PubMed  Google Scholar 

  58. Le Treut YP, Hardwigsen J, Ananian P, Saisse J, Gregoire E, Richa H, et al. Resection of hepatocellular carcinoma with tumor thrombus in the major vasculature. A European case-control series. J Gastrointest Surg. 2006;10(6):855–62.

    Article  PubMed  Google Scholar 

  59. Chen XP, Qiu FZ, Wu ZD, Zhang ZW, Huang ZY, Chen YF, et al. Effects of location and extension of portal vein tumor thrombus on long-term outcomes of surgical treatment for hepatocellular carcinoma. Ann Surg Oncol. 2006;13(7):940–6.

    Article  PubMed  Google Scholar 

  60. Rickles FR, Falanga A. Molecular basis for the relationship between thrombosis and cancer. Thromb Res. 2001;102(6):V215–24.

    Article  CAS  PubMed  Google Scholar 

  61. Reitter EM, Ay C, Kaider A, Pirker R, Zielinski C, Zlabinger G, et al. Interleukin levels and their potential association with venous thromboembolism and survival in cancer patients. Clin Exp Immunol. 2014;177(1):253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015;126(5):582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marchetti M, Vignoli A, Russo L, Balducci D, Pagnoncelli M, Barbui T, et al. Endothelial capillary tube formation and cell proliferation induced by tumor cells are affected by low molecular weight heparins and unfractionated heparin. Thromb Res. 2008;121(5):637–45.

    Article  CAS  PubMed  Google Scholar 

  64. Leone G, Sica S, Chiusolo P, Teofili L, De Stefano V. Blood cells diseases and thrombosis. Haematologica. 2001;86(12):1236–44.

    CAS  PubMed  Google Scholar 

  65. de Gaetano G, Cerletti C, Evangelista V. Recent advances in platelet-polymorphonuclear leukocyte interaction. Haemostasis. 1999;29(1):41–9.

    PubMed  Google Scholar 

  66. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Connolly GC, Khorana AA, Kuderer NM, Culakova E, Francis CW, Lyman GH. Leukocytosis, thrombosis and early mortality in cancer patients initiating chemotherapy. Thromb Res. 2010;126(2):113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thaler J, Koder S, Kornek G, Pabinger I, Ay C. Microparticle-associated tissue factor activity in patients with metastatic pancreatic cancer and its effect on fibrin clot formation. Transl Res. 2014;163(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  69. Kamikura Y, Wada H, Nobori T, Kobayashi T, Sase T, Nishikawa M, et al. Elevated levels of leukocyte tissue factor mRNA in patients with venous thromboembolism. Thromb Res. 2005;116(4):307–12.

    Article  CAS  PubMed  Google Scholar 

  70. Sase T, Wada H, Yamaguchi M, Ogawa S, Kamikura Y, Nishikawa M, et al. Haemostatic abnormalities and thrombotic disorders in malignant lymphoma. Thromb Haemost. 2005;93(1):153–9.

    CAS  PubMed  Google Scholar 

  71. Stein E, McMahon B, Kwaan H, Altman JK, Frankfurt O, Tallman MS. The coagulopathy of acute promyelocytic leukaemia revisited. Best Pract Res. 2009;22(1):153–63.

    Article  CAS  Google Scholar 

  72. Lisman T, de Groot PG, Meijers JC, Rosendaal FR. Reduced plasma fibrinolytic potential is a risk factor for venous thrombosis. Blood. 2005;105(3):1102–5.

    Article  CAS  PubMed  Google Scholar 

  73. Wang J, Weiss I, Svoboda K, Kwaan HC. Thrombogenic role of cells undergoing apoptosis. Br J Haematol. 2001;115(2):382–91.

    Article  CAS  PubMed  Google Scholar 

  74. Date K, Hall J, Greenman J, Maraveyas A, Madden LA. Tumour and microparticle tissue factor expression and cancer thrombosis. Thromb Res. 2013;131(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  75. Davila M, Amirkhosravi A, Coll E, Desai H, Robles L, Colon J, et al. Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation. J Thromb Haemost. 2008;6(9):1517–24.

    Article  CAS  PubMed  Google Scholar 

  76. Lechner D, Kollars M, Gleiss A, Kyrle PA, Weltermann A. Chemotherapy-induced thrombin generation via procoagulant endothelial microparticles is independent of tissue factor activity. J Thromb Haemost. 2007;5(12):2445–52.

    Article  CAS  PubMed  Google Scholar 

  77. Nijziel MR, van Oerle R, Christella M, Thomassen LG, van Pampus EC, Hamulyak K, et al. Acquired resistance to activated protein C in breast cancer patients. Br J Haematol. 2003;120(1):117–22.

    Article  CAS  PubMed  Google Scholar 

  78. De Lucia D, De Vita F, Orditura M, Renis V, Belli A, Conte M, et al. Hypercoagulable state in patients with advanced gastrointestinal cancer: evidence for an acquired resistance to activated protein C. Tumori. 1997;83(6):948–52.

    Article  PubMed  Google Scholar 

  79. Elice F, Fink L, Tricot G, Barlogie B, Zangari M. Acquired resistance to activated protein C (aAPCR) in multiple myeloma is a transitory abnormality associated with an increased risk of venous thromboembolism. Br J Haematol. 2006;134(4):399–405.

    Article  CAS  PubMed  Google Scholar 

  80. Zangari M, Berno T, Zhan F, Tricot G, Fink L. Mechanisms of thrombosis in paraproteinemias: the effects of immunomodulatory drugs. Semin Thromb Hemost. 2012;38(8):768–79.

    Article  CAS  PubMed  Google Scholar 

  81. Pusterla S, Previtali S, Marziali S, Cortelazzo S, Rossi A, Barbui T, et al. Antiphospholipid antibodies in lymphoma: prevalence and clinical significance. Hematol J. 2004;5(4):341–6.

    Article  CAS  PubMed  Google Scholar 

  82. Genvresse I, Luftner D, Spath-Schwalbe E, Buttgereit F. Prevalence and clinical significance of anticardiolipin and anti-beta2-glycoprotein-I antibodies in patients with non-Hodgkin’s lymphoma. Eur J Haematol. 2002;68(2):84–90.

    Article  CAS  PubMed  Google Scholar 

  83. Horowitz N, Brenner B. Thrombophilia and cancer. Pathophysiol Haemost Thromb. 2008;36(3–4):131–6.

    PubMed  Google Scholar 

  84. Salluh JI, Soares M, De Meis E. Antiphospholipid antibodies and multiple organ failure in critically ill cancer patients. Clinics (Sao Paulo). 2009;64(2):79–82.

    Article  Google Scholar 

  85. Font C, Vidal L, Espinosa G, Tassies D, Monteagudo J, Farrus B, et al. Solid cancer, antiphospholipid antibodies, and venous thromboembolism. Autoimmun Rev. 2011;10(4):222–7.

    Article  CAS  PubMed  Google Scholar 

  86. Bazzan M, Montaruli B, Vaccarino A, Fornari G, Saitta M, Prandoni P. Presence of low titre of antiphospholipid antibodies in cancer patients: a prospective study. Intern Emerg Med. 2009;4(6):491–5.

    Article  PubMed  Google Scholar 

  87. Gomez-Puerta JA, Cervera R, Espinosa G, Aguilo S, Bucciarelli S, Ramos-Casals M, et al. Antiphospholipid antibodies associated with malignancies: clinical and pathological characteristics of 120 patients. Semin Arthritis Rheum. 2006;35(5):322–32.

    Article  CAS  PubMed  Google Scholar 

  88. Decousus H, Moulin N, Quenet S, Bost V, Rivron-Guillot K, Laporte S, et al. Thrombophilia and risk of venous thrombosis in patients with cancer. Thromb Res. 2007;120(Suppl 2):S51–61.

    Article  PubMed  Google Scholar 

  89. Pabinger I, Ay C, Dunkler D, Thaler J, Reitter EM, Marosi C, et al. Factor V Leiden mutation increases the risk for venous thromboembolism in cancer patients - results from the Vienna Cancer And Thrombosis Study (CATS). J Thromb Haemost. 2015;13(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  90. Abramson N, Costantino JP, Garber JE, Berliner N, Wickerham DL, Wolmark N. Effect of Factor V Leiden and prothrombin G20210–>A mutations on thromboembolic risk in the national surgical adjuvant breast and bowel project breast cancer prevention trial. J Natl Cancer Inst. 2006;98(13):904–10.

    Article  CAS  PubMed  Google Scholar 

  91. Wahba MA, Ismail MA, Saad AA, Habashy DM, Hafeez ZM, Boshnak NH. Impact of thrombophilic genes mutations on thrombosis risk in Egyptian nonmetastatic cancer patients. Blood Coagul Fibrinolysis. 2015;26(3):309–15.

    Article  CAS  PubMed  Google Scholar 

  92. Eroglu A, Ulu A, Cam R, Kurtman C, Akar N. Prevalence of factor V 1691 G-A (Leiden) and prothrombin G20210A polymorphisms and the risk of venous thrombosis among cancer patients. J Thromb Thrombolysis. 2007;23(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  93. Lechner D, Weltermann A. Chemotherapy-induced thrombosis: a role for microparticles and tissue factor? Semin Thromb Hemost. 2008;34(2):199–203.

    Article  CAS  PubMed  Google Scholar 

  94. Samare Fekri M, Khalily Zade M, Fatehi S. The association of deep vein thrombosis with cancer treatment modality: chemotherapy or surgery? Iran Red Crescent Med J. 2014;16(9):e14722.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kucher N, Spirk D, Baumgartner I, Mazzolai L, Korte W, Nobel D, et al. Lack of prophylaxis before the onset of acute venous thromboembolism among hospitalized cancer patients: the SWIss Venous ThromboEmbolism Registry (SWIVTER). Ann Oncol. 2010;21(5):931–5.

    Article  CAS  PubMed  Google Scholar 

  96. Mitchell LG, Sutor AH, Andrew M. Hemostasis in childhood acute lymphoblastic leukemia: coagulopathy induced by disease and treatment. Semin Thromb Hemost. 1995;21(4):390–401.

    Article  CAS  PubMed  Google Scholar 

  97. Jorgensen KA, Sorensen P, Freund L. Effect of glucocorticosteroids on some coagulation tests. Acta Haematol. 1982;68(1):39–42.

    Article  CAS  PubMed  Google Scholar 

  98. Singhal S, Mehta J. Thalidomide in cancer. Biomed Pharmacother. 2002;56(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  99. Zangari M, Siegel E, Barlogie B, Anaissie E, Saghafifar F, Fassas A, et al. Thrombogenic activity of doxorubicin in myeloma patients receiving thalidomide: implications for therapy. Blood. 2002;100(4):1168–71.

    Article  CAS  PubMed  Google Scholar 

  100. Gieseler F. Pathophysiological considerations to thrombophilia in the treatment of multiple myeloma with thalidomide and derivatives. Thromb Haemost. 2008;99(6):1001–7.

    Article  CAS  PubMed  Google Scholar 

  101. Klein U, Kosely F, Hillengass J, Hundemer M, Schmitt S, Neben K, et al. Effective prophylaxis of thromboembolic complications with low molecular weight heparin in relapsed multiple myeloma patients treated with lenalidomide and dexamethasone. Ann Hematol. 2009;88(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  102. Agnelli G, Verso M. Therapy insight: venous-catheter-related thrombosis in cancer patients. Nat Clin Pract Oncol. 2006;3(4):214–22.

    Article  PubMed  Google Scholar 

  103. Dentali F, Gianni M, Agnelli G, Ageno W. Association between inherited thrombophilic abnormalities and central venous catheter thrombosis in patients with cancer: a meta-analysis. J Thromb Haemost. 2008;6(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  104. Refaei M, Fernandes B, Brandwein J, Goodyear MD, Pokhrel A, Wu C. Incidence of catheter-related thrombosis in acute leukemia patients: a comparative, retrospective study of the safety of peripherally inserted vs. centrally inserted central venous catheters. Ann Hematol. 2016;95(12):2057–64.

    Article  PubMed  Google Scholar 

  105. Verso M, Agnelli G. Venous thromboembolism associated with long-term use of central venous catheters in cancer patients. J Clin Oncol. 2003;21(19):3665–75.

    Article  PubMed  Google Scholar 

  106. Debourdeau P, Farge D, Beckers M, Baglin C, Bauersachs RM, Brenner B, et al. International clinical practice guidelines for the treatment and prophylaxis of thrombosis associated with central venous catheters in patients with cancer. J Thromb Haemost. 2013;11(1):71–80.

    Article  CAS  PubMed  Google Scholar 

  107. Gaitini D, Beck-Razi N, Haim N, Brenner B. Prevalence of upper extremity deep venous thrombosis diagnosed by color Doppler duplex sonography in cancer patients with central venous catheters. J Ultrasound Med. 2006;25(10):1297–303.

    Article  PubMed  Google Scholar 

  108. Lee AY, Levine MN, Butler G, Webb C, Costantini L, Gu C, et al. Incidence, risk factors, and outcomes of catheter-related thrombosis in adult patients with cancer. J Clin Oncol. 2006;24(9):1404–8.

    Article  PubMed  Google Scholar 

  109. Monreal M, Munoz FJ, Rosa V, Romero C, Roman P, Di Micco P, et al. Upper extremity DVT in oncological patients: analysis of risk factors. Data from the RIETE registry. Exp Oncol. 2006;28(3):245–7.

    CAS  PubMed  Google Scholar 

  110. Tyritzis SI, Wallerstedt A, Steineck G, Nyberg T, Hugosson J, Bjartell A, et al. Thromboembolic complications in 3,544 patients undergoing radical prostatectomy with or without lymph node dissection. J Urol. 2015;193(1):117–25.

    Article  PubMed  Google Scholar 

  111. Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349(2):146–53.

    Article  CAS  PubMed  Google Scholar 

  112. Lee AY, Kamphuisen PW, Meyer G, Bauersachs R, Janas MS, Jarner MF, et al. Tinzaparin vs warfarin for treatment of acute venous thromboembolism in patients with active cancer: a randomized clinical trial. JAMA. 2015;314(7):677–86.

    Article  CAS  PubMed  Google Scholar 

  113. Lyman GH, Khorana AA, Falanga A, Clarke-Pearson D, Flowers C, Jahanzeb M, et al. American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol. 2007;25(34):5490–505.

    Article  CAS  PubMed  Google Scholar 

  114. Debourdeau P, Elalamy I, de Raignac A, Meria P, Gornet JM, Amah Y, et al. Long-term use of daily subcutaneous low molecular weight heparin in cancer patients with venous thromboembolism: why hesitate any longer? Support Care Cancer. 2008;16(12):1333–41.

    Article  PubMed  Google Scholar 

  115. Farge D, Debourdeau P, Beckers M, Baglin C, Bauersachs RM, Brenner B, et al. International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. J Thromb Haemost. 2013;11(1):56–70.

    Article  CAS  PubMed  Google Scholar 

  116. Mandala M, Falanga A, Piccioli A, Prandoni P, Pogliani EM, Labianca R, et al. Venous thromboembolism and cancer: guidelines of the Italian Association of Medical Oncology (AIOM). Crit Rev Oncol Hematol. 2006;59(3):194–204.

    Article  CAS  PubMed  Google Scholar 

  117. Martino MA, Williamson E, Rajaram L, Lancaster JM, Hoffman MS, Maxwell GL, et al. Defining practice patterns in gynecologic oncology to prevent pulmonary embolism and deep venous thrombosis. Gynecol Oncol. 2007;106(3):439–45.

    Article  CAS  PubMed  Google Scholar 

  118. Farge-Bancel D, Bounameaux H, Brenner B, Buller HR, Kakkar A, Pabinger I, et al. Implementing thrombosis guidelines in cancer patients: a review. Rambam Maimonides Med J. 2014;5(4):e0041.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lee AY, Rickles FR, Julian JA, Gent M, Baker RI, Bowden C, et al. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J Clin Oncol. 2005;23(10):2123–9.

    Article  CAS  PubMed  Google Scholar 

  120. Noble SI, Nelson A, Turner C, Finlay IG. Acceptability of low molecular weight heparin thromboprophylaxis for inpatients receiving palliative care: qualitative study. BMJ. 2006;332(7541):577–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Seaman S, Nelson A, Noble S. Cancer-associated thrombosis, low-molecular-weight heparin, and the patient experience: a qualitative study. Patient Prefer Adherence. 2014;8:453–61.

    PubMed  PubMed Central  Google Scholar 

  122. Sheard L, Prout H, Dowding D, Noble S, Watt I, Maraveyas A, et al. The ethical decisions UK doctors make regarding advanced cancer patients at the end of life—the perceived (in) appropriateness of anticoagulation for venous thromboembolism: a qualitative study. BMC Med Ethics. 2012;13:22.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Johnson MJ, Sheard L, Maraveyas A, Noble S, Prout H, Watt I, et al. Diagnosis and management of people with venous thromboembolism and advanced cancer: how do doctors decide? A qualitative study. BMC Med Inform Decis Mak. 2012;12:75.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gartner V, Kierner KA, Namjesky A, Kum-Taucher B, Hammerl-Ferrari B, Watzke HH, et al. Thromboprophylaxis in patients receiving inpatient palliative care: a survey of present practice in Austria. Support Care Cancer. 2012;20(9):2183–7.

    Article  PubMed  Google Scholar 

  125. Martin MG, Vij R. Arterial thrombosis with immunomodulatory derivatives in the treatment of multiple myeloma: a single-center case series and review of the literature. Clin Lymphoma Myeloma. 2009;9(4):320–3.

    Article  CAS  PubMed  Google Scholar 

  126. Rajkumar SV, Blood E. Lenalidomide and venous thrombosis in multiple myeloma. N Engl J Med. 2006;354(19):2079–80.

    Article  PubMed  Google Scholar 

  127. Zangari M, Elice F, Fink L, Tricot G. Thrombosis in multiple myeloma. Expert Rev Anticancer Ther. 2007;7(3):307–15.

    Article  CAS  PubMed  Google Scholar 

  128. Zamagni E, Brioli A, Tacchetti P, Zannetti B, Pantani L, Cavo M. Multiple myeloma, venous thromboembolism, and treatment-related risk of thrombosis. Semin Thromb Hemost. 2011;37(3):209–19.

    Article  PubMed  Google Scholar 

  129. Maxwell GL, Synan I, Dodge R, Carroll B, Clarke-Pearson DL. Pneumatic compression versus low molecular weight heparin in gynecologic oncology surgery: a randomized trial. Obstet Gynecol. 2001;98(6):989–95.

    CAS  PubMed  Google Scholar 

  130. Patiar S, Kirwan CC, McDowell G, Bundred NJ, McCollum CN, Byrne GJ. Prevention of venous thromboembolism in surgical patients with breast cancer. Br J Surg. 2007;94(4):412–20.

    Article  CAS  PubMed  Google Scholar 

  131. Nagahiro I, Andou A, Aoe M, Sano Y, Date H, Shimizu N. Intermittent pneumatic compression is effective in preventing symptomatic pulmonary embolism after thoracic surgery. Surg Today. 2004;34(1):6–10.

    Article  PubMed  Google Scholar 

  132. Young AM, Billingham LJ, Begum G, Kerr DJ, Hughes AI, Rea DW, et al. Warfarin thromboprophylaxis in cancer patients with central venous catheters (WARP): an open-label randomised trial. Lancet. 2009;373(9663):567–74.

    Article  PubMed  Google Scholar 

  133. De Cicco M, Matovic M, Balestreri L, Steffan A, Pacenzia R, Malafronte M, et al. Early and short-term acenocumarine or dalteparin for the prevention of central vein catheter-related thrombosis in cancer patients: a randomized controlled study based on serial venographies. Ann Oncol. 2009;20(12):1936–42.

    Article  PubMed  Google Scholar 

  134. van Es N, Buller HR. Using direct oral anticoagulants (DOACs) in cancer and other high-risk populations. Hematology Am Soc Hematol Educ Program. 2015;2015:125–31.

    PubMed  Google Scholar 

  135. Ross JA, Miller M, Hernandez CR. OC-13 - safe and effective use of direct oral anticoagulants (DOAC) versus conventional anticoagulation for the treatment of cancer-related venous thromboembolism. Thromb Res. 2016;140(Suppl 1):S173–4.

    Article  PubMed  Google Scholar 

  136. Vedovati MC, Germini F, Agnelli G, Becattini C. Direct oral anticoagulants in patients with VTE and cancer: a systematic review and meta-analysis. Chest. 2015;147(2):475–83.

    Article  PubMed  Google Scholar 

  137. Mancuso A, Vedovati MC, Pierpaoli L, Paliani U, Conti S, Filippucci E, et al. PO-40 - Real-life use of non-vitamin k antagonist oral anticoagulants in patients with cancer associated venous thromboembolism: data from a prospective cohort. Thromb Res. 2016;140(Suppl 1):S191.

    Article  PubMed  Google Scholar 

  138. Wells PS, Theberge IA, Bowdridge JC, Forgie MA, Carrier M. PO-41 - rivaroxaban is effective therapy for high risk cancer patients with venous thromboembolic disease. Thromb Res. 2016;140(Suppl 1):S191–2.

    Article  PubMed  Google Scholar 

  139. Mantha S, Laube E, Miao Y, Sarasohn DM, Parameswaran R, Stefanik S, et al. Safe and effective use of rivaroxaban for treatment of cancer-associated venous thromboembolic disease: a prospective cohort study. J Thromb Thrombolysis. 2017;43(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  140. Agnelli G, Buller HR, Cohen A, Gallus AS, Lee TC, Pak R, et al. Oral apixaban for the treatment of venous thromboembolism in cancer patients: results from the AMPLIFY trial. J Thromb Haemost. 2015;13(12):2187–91.

    Article  CAS  PubMed  Google Scholar 

  141. Schulman S, Goldhaber SZ, Kearon C, Kakkar AK, Schellong S, Eriksson H, et al. Treatment with dabigatran or warfarin in patients with venous thromboembolism and cancer. Thromb Haemost. 2015;114(1):150–7.

    PubMed  Google Scholar 

  142. Raskob GE, van Es N, Segers A, Angchaisuksiri P, Oh D, Boda Z, et al. Edoxaban for venous thromboembolism in patients with cancer: results from a non-inferiority subgroup analysis of the Hokusai-VTE randomised, double-blind, double-dummy trial. Lancet Haematol. 2016;3(8):e379–87.

    Article  PubMed  Google Scholar 

  143. Prandoni P. The treatment of cancer-associated venous thromboembolism in the era of the novel oral anticoagulants. Expert Opin Pharmacother. 2015;16(16):2391–4.

    Article  CAS  PubMed  Google Scholar 

  144. Kakkar AK, Levine M, Pinedo HM, Wolff R, Wong J. Venous thrombosis in cancer patients: insights from the FRONTLINE survey. Oncologist. 2003;8(4):381–8.

    Article  PubMed  Google Scholar 

  145. Korte W, Greiner J. PARKAA paves the way. Thromb Haemost. 2003;90(2):163–4.

    CAS  PubMed  Google Scholar 

  146. Mitchell LG, Andrew M, Hanna K, Abshire T, Halton J, Anderson R, et al. A prospective cohort study determining the prevalence of thrombotic events in children with acute lymphoblastic leukemia and a central venous line who are treated with L-asparaginase: results of the Prophylactic Antithrombin Replacement in Kids with Acute Lymphoblastic Leukemia Treated with Asparaginase (PARKAA) Study. Cancer. 2003;97(2):508–16.

    Article  CAS  PubMed  Google Scholar 

  147. Nand S, Molokie R. Therapeutic plasmapheresis and protein A immunoadsorption in malignancy: a brief review. J Clin Apher. 1990;5(4):206–12.

    Article  CAS  PubMed  Google Scholar 

  148. Malecki R, Gacka M, Kuliszkiewicz-Janus M, Jakobsche-Policht U, Kwiatkowski J, Adamiec R, et al. Altered plasma fibrin clot properties in essential thrombocythemia. Platelets. 2016;27(2):110–6.

    CAS  PubMed  Google Scholar 

  149. De Stefano V, Vannucchi AM, Ruggeri M, Cervantes F, Alvarez-Larran A, Iurlo A, et al. Splanchnic vein thrombosis in myeloproliferative neoplasms: risk factors for recurrences in a cohort of 181 patients. Blood Cancer J. 2016;6(11):e493.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Barginear MF, Lesser M, Akerman ML, Strakhan M, Shapira I, Bradley T, et al. Need for inferior vena cava filters in cancer patients: a surrogate marker for poor outcome. Clin Appl Thromb Hemost. 2009;15(3):263–9.

    Article  PubMed  Google Scholar 

  151. Zerati AE, Wolosker N, Yazbek G, Langer M, Nishinari K. Vena cava filters in cancer patients: experience with 50 patients. Clinics (Sao Paulo). 2005;60(5):361–6.

    Article  Google Scholar 

  152. Usoh F, Hingorani A, Ascher E, Shiferson A, Tran V, Marks N, et al. Long-term follow-up for superior vena cava filter placement. Ann Vasc Surg. 2009;23(3):350–4.

    Article  PubMed  Google Scholar 

  153. Ingber S, Geerts WH. Vena caval filters: current knowledge, uncertainties and practical approaches. Curr Opin Hematol. 2009;16(5):402–6.

    Article  PubMed  Google Scholar 

  154. Mita K, Ito H, Murabayashi R, Sueyoshi K, Asakawa H, Nabetani M, et al. Postoperative bleeding complications after gastric cancer surgery in patients receiving anticoagulation and/or antiplatelet agents. Ann Surg Oncol. 2012;19(12):3745–52.

    Article  PubMed  Google Scholar 

  155. Cihoric N, Crowe S, Eychmuller S, Aebersold DM, Ghadjar P. Clinically significant bleeding in incurable cancer patients: effectiveness of hemostatic radiotherapy. Radiat Oncol. 2012;7:132.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Trujillo-Santos J, Nieto JA, Ruiz-Gamietea A, Lopez-Jimenez L, Garcia-Bragado F, Quintavalla R, et al. Bleeding complications associated with anticoagulant therapy in patients with cancer. Thromb Res. 2010;125(Suppl 2):S58–61.

    Article  PubMed  Google Scholar 

  157. Bodensteiner DC, Doolittle GC. Adverse haematological complications of anticancer drugs. Clinical presentation, management and avoidance. Drug Saf. 1993;8(3):213–24.

    Article  CAS  PubMed  Google Scholar 

  158. Avvisati G, Tirindelli MC, Annibali O. Thrombocytopenia and hemorrhagic risk in cancer patients. Crit Rev Oncol Hematol. 2003;48(Suppl):S13–6.

    Article  PubMed  Google Scholar 

  159. Vinholt PJ, Alnor A, Nybo M, Hvas AM. Prediction of bleeding and prophylactic platelet transfusions in cancer patients with thrombocytopenia. Platelets. 2016;27(6):547–54.

    Article  CAS  PubMed  Google Scholar 

  160. Webert K, Cook RJ, Sigouin CS, Rebulla P, Heddle NM. The risk of bleeding in thrombocytopenic patients with acute myeloid leukemia. Haematologica. 2006;91(11):1530–7.

    PubMed  Google Scholar 

  161. Wandt H, Frank M, Ehninger G, Schneider C, Brack N, Daoud A, et al. Safety and cost effectiveness of a 10 × 10(9)/L trigger for prophylactic platelet transfusions compared with the traditional 20 × 10(9)/L trigger: a prospective comparative trial in 105 patients with acute myeloid leukemia. Blood. 1998;91(10):3601–6.

    CAS  PubMed  Google Scholar 

  162. Wandt H, Schaefer-Eckart K, Wendelin K, Pilz B, Wilhelm M, Thalheimer M, et al. Therapeutic platelet transfusion versus routine prophylactic transfusion in patients with haematological malignancies: an open-label, multicentre, randomised study. Lancet. 2012;380(9850):1309–16.

    Article  PubMed  Google Scholar 

  163. Le Maitre A, Ding K, Shepherd FA, Leighl N, Arnold A, Seymour L. Anticoagulation and bleeding: a pooled analysis of lung cancer trials of the NCIC Clinical Trials Group. J Thorac Oncol. 2009;4(5):586–94.

    Article  PubMed  Google Scholar 

  164. Elting LS, Cantor SB, Martin CG, Hamblin L, Kurtin D, Rivera E, et al. Cost of chemotherapy-induced thrombocytopenia among patients with lymphoma or solid tumors. Cancer. 2003;97(6):1541–50.

    Article  PubMed  Google Scholar 

  165. Deichmann M, Helmke B, Bock M, Jackel A, Waldmann V, Flechtenmacher C, et al. Massive lethal cerebral bleeding in a patient with melanoma without intracranial metastasis. Clin Oncol. 1998;10(4):272–3.

    Article  CAS  Google Scholar 

  166. Wandt H, Schafer-Eckart K, Greinacher A. Platelet transfusion in hematology, oncology and surgery. Deutsch Arztebl Int. 2014;111(48):809–15.

    Google Scholar 

  167. Koscielny J, von Tempelhoff GF, Ziemer S, Radtke H, Schmutzler M, Sinha P, et al. A practical concept for preoperative management of patients with impaired primary hemostasis. Clin Appl Thromb Hemost. 2004;10(2):155–66.

    Article  PubMed  Google Scholar 

  168. Sabrkhany S, Griffioen AW, Pineda S, Sanders L, Mattheij N, van Geffen JP, et al. Sunitinib uptake inhibits platelet function in cancer patients. Eur J Cancer. 2016;66:47–54.

    Article  CAS  PubMed  Google Scholar 

  169. Hreinsson JP, Bjarnason I, Bjornsson ES. The outcome and role of drugs in patients with unexplained gastrointestinal bleeding. Scand J Gastroenterol. 2015;50(12):1482–9.

    Article  CAS  PubMed  Google Scholar 

  170. Lehmann FS, Beglinger C. Impact of COX-2 inhibitors in common clinical practice a gastroenterologist's perspective. Curr Top Med Chem. 2005;5(5):449–64.

    Article  CAS  PubMed  Google Scholar 

  171. Lee Y, Rodriguez C, Dionne RA. The role of COX-2 in acute pain and the use of selective COX-2 inhibitors for acute pain relief. Curr Pharm Des. 2005;11(14):1737–55.

    Article  CAS  PubMed  Google Scholar 

  172. Salinas G, Rangasetty UC, Uretsky BF, Birnbaum Y. The cyclooxygenase 2 (COX-2) story: it’s time to explain, not inflame. J Cardiovasc Pharmacol Ther. 2007;12(2):98–111.

    Article  CAS  PubMed  Google Scholar 

  173. Spectre G, Libster D, Grisariu S, Da'as N, Yehuda DB, Gimmon Z, et al. Bleeding, obstruction, and perforation in a series of patients with aggressive gastric lymphoma treated with primary chemotherapy. Ann Surg Oncol. 2006;13(11):1372–8.

    Article  PubMed  Google Scholar 

  174. Kawabata H, Uno K, Yasuda K, Yamashita M. Experience of low-dose, short-course palliative radiotherapy for bleeding from unresectable gastric cancer. J Palliat Med. 2017;20(2):177–80.

    Article  PubMed  Google Scholar 

  175. Desai SP, Ben-Josef E, Normolle DP, Francis IR, Greenson JK, Simeone DM, et al. Phase I study of oxaliplatin, full-dose gemcitabine, and concurrent radiation therapy in pancreatic cancer. J Clin Oncol. 2007;25(29):4587–92.

    Article  CAS  PubMed  Google Scholar 

  176. Wada Y, Uchiba M, Kawano Y, Kai N, Takahashi W, Honda J, et al. Severe bleeding tendency caused by a rare complication of excessive fibrinolysis with disseminated intravascular coagulation in a 51-year-old Japanese man with prostate cancer: a case report. J Med Case Reports. 2012;6:378.

    Article  Google Scholar 

  177. Rocha E, Paramo JA, Montes R, Panizo C. Acute generalized, widespread bleeding. Diagnosis and management. Haematologica. 1998;83(11):1024–37.

    CAS  PubMed  Google Scholar 

  178. Okajima K, Sakamoto Y, Uchiba M. Heterogeneity in the incidence and clinical manifestations of disseminated intravascular coagulation: a study of 204 cases. Am J Hematol. 2000;65(3):215–22.

    Article  CAS  PubMed  Google Scholar 

  179. Tallman MS, Lefebvre P, Baine RM, Shoji M, Cohen I, Green D, et al. Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia. J Thromb Haemost. 2004;2(8):1341–50.

    Article  CAS  PubMed  Google Scholar 

  180. Menell JS, Cesarman GM, Jacovina AT, McLaughlin MA, Lev EA, Hajjar KA. Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med. 1999;340(13):994–1004.

    Article  CAS  PubMed  Google Scholar 

  181. Kwaan HC, Wang J, Weiss I. Expression of receptors for plasminogen activators on endothelial cell surface depends on their origin. J Thromb Haemost. 2004;2(2):306–12.

    Article  CAS  PubMed  Google Scholar 

  182. Celebi N, Celebioglu B, Selcuk M, Canbay O, Karagoz AH, Aypar U. The role of antifibrinolytic agents in gynecologic cancer surgery. Saudi Med J. 2006;27(5):637–41.

    PubMed  Google Scholar 

  183. Sallah S, Wan JY. Inhibitors against factor VIII in patients with cancer. Analysis of 41 patients. Cancer. 2001;91(6):1067–74.

    Article  CAS  PubMed  Google Scholar 

  184. Uramoto H, Shimokawa H, Tanaka F. Postoperative bleeding after surgery in patients with lung cancer. Anticancer Res. 2014;34(2):981–4.

    PubMed  Google Scholar 

  185. Bonello VA, Bhangu A, Fitzgerald JE, Rasheed S, Tekkis P. Intraoperative bleeding and haemostasis during pelvic surgery for locally advanced or recurrent rectal cancer: a prospective evaluation. Tech Coloproctol. 2014;18(10):887–93.

    Article  CAS  PubMed  Google Scholar 

  186. Yamashita S, Tokuishi K, Moroga T, Abe S, Yamamoto K, Miyahara S, et al. Totally thoracoscopic surgery and troubleshooting for bleeding in non-small cell lung cancer. Ann Thorac Surg. 2013;95(3):994–9.

    Article  PubMed  Google Scholar 

  187. Campagnutta E, Giorda G, De Piero G, Gallo A, Fantin D, Scarabelli C. Different patterns of postoperative bleeding following cytoreductive surgery for gynecological cancer. Eur J Gynaecol Oncol. 2000;21(1):91–4.

    CAS  PubMed  Google Scholar 

  188. Wettstein P, Haeberli A, Stutz M, Rohner M, Corbetta C, Gabi K, et al. Decreased factor XIII availability for thrombin and early loss of clot firmness in patients with unexplained intraoperative bleeding. Anesth Analg. 2004;99(5):1564–9; table of contents

    Article  CAS  PubMed  Google Scholar 

  189. Korte W, Gabi K, Rohner M, Gahler A, Szadkowski C, Schnider TW, et al. Preoperative fibrin monomer measurement allows risk stratification for high intraoperative blood loss in elective surgery. Thromb Haemost. 2005;94(1):211–5.

    CAS  PubMed  Google Scholar 

  190. Korte WC, Szadkowski C, Gahler A, Gabi K, Kownacki E, Eder M, et al. Factor XIII substitution in surgical cancer patients at high risk for intraoperative bleeding. Anesthesiology. 2009;110(2):239–45.

    CAS  PubMed  Google Scholar 

  191. Hashiguchi Y, Fukuda T, Ichimura T, Matsumoto Y, Yasui T, Sumi T, et al. Chemotherapy-induced thrombocytopenia and clinical bleeding in patients with gynecologic malignancy. Eur J Gynaecol Oncol. 2015;36(2):168–73.

    CAS  PubMed  Google Scholar 

  192. Appel IM, Hop WC, van Kessel-Bakvis C, Stigter R, Pieters R. L-Asparaginase and the effect of age on coagulation and fibrinolysis in childhood acute lymphoblastic leukemia. Thromb Haemost. 2008;100(2):330–7.

    CAS  PubMed  Google Scholar 

  193. Kasturi J, Saraya AK. Platelet functions in dysproteinaemia. Acta Haematol. 1978;59(2):104–13.

    Article  CAS  PubMed  Google Scholar 

  194. Colwell NS, Tollefsen DM, Blinder MA. Identification of a monoclonal thrombin inhibitor associated with multiple myeloma and a severe bleeding disorder. Br J Haematol. 1997;97(1):219–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Korte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korte, W. (2018). Thrombosis and Bleeding in Cancer Patients. In: Olver, I. (eds) The MASCC Textbook of Cancer Supportive Care and Survivorship. Springer, Cham. https://doi.org/10.1007/978-3-319-90990-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90990-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90989-9

  • Online ISBN: 978-3-319-90990-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics