Advertisement

Fault-Tolerant Control of the (13C) Isotope Separation Cascade

  • Eva-H. DulfEmail author
  • Cristina-I. Muresan
  • Clara M. Ionescu
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 24)

Abstract

The (13C) isotope separation cascade – from control engineering point of view – is a multivariable, distributed, nonlinear system, with strong interactions between the subsystems. Being a complex chemical plant, a robust, fault-tolerant control is needed. The present paper discusses the idea to redistribute the control task among the subsystems, imposing new set points for each subsystem by local information exchange when a fault occurs. In order to ensure robustness, in the present work fractional order PI controllers are used, having one more degree of freedom in comparison with the classical, integer order PI controllers. The advantages of the method are illustrated by simulation results presenting different real fault scenarios.

Keywords

Fault tolerant control Nonlinear system PI controllers Fractional order control Complex chemical systems Isotopic separation Physical network Robustness Communication network Relative gray array 

Notes

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI, project number PN-II-RU-TE-2014-4-1465, contract number 38/2015 and the Bolyai János grant of the Hungarian Academy of Sciences.

References

  1. 1.
    Kaviarasan, B., Sakthivel, R., Kwon, O.M.: Robust fault-tolerant control for power systems against mixed actuator failures. Nonlinear Anal. Hybrid Syst. 22(1), 249–261 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gao, R.-Z., Lai, F., Gao, H.: Neuro-adaptive fault-tolerant control of high speed trains under traction-braking failures using self-structuring neural networks. Inf. Sci. 367–368(1), 449–462 (2016)CrossRefGoogle Scholar
  3. 3.
    Choi, U.-M., Lee, J.-S., Blaabjerg, F., Lee, K.-B.: Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter. IEEE Trans. Power Electron. 31(10), 7234–7247 (2016)Google Scholar
  4. 4.
    Robles, D., Puig, V., Ocampo-Martinez, C., Garza-Castanon, L.E.: Reliable fault-tolerant model predictive control of drinking water transport networks. Control. Eng. Pract. 55(1), 197–211 (2016)CrossRefGoogle Scholar
  5. 5.
    Podlubny, I.: Fractional-order systems and PIλDμ-controllers. IEEE Trans. Autom. Control, 44, 208–214 (1999)Google Scholar
  6. 6.
    Izaguirre-Espinosa, C., Muñoz-Vázquez, A.J., Sánchez-Orta, A., Parra-Vega, V., Sanahuja, G.: Fractional attitude-reactive control for robust quadrotor position stabilization without resolving underactuation. Control. Eng. Pract. 53(1), 47–56 (2016)CrossRefGoogle Scholar
  7. 7.
    Rabah, K., Ladaci, S., Lashab, M.: State feedback with fractional PIλDμ control structure for Genesio-Tesi chaos stabilization. In: 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA 2015, 5 July 2016, pp. 328–333 (2016)Google Scholar
  8. 8.
    Podlubny, I., Petráš, I., Skovranek, T., Terpák, J.: Toolboxes and programs for fractional-order system identification, modeling, simulation, and control. In: 17th IEEE International Carpathian Control Conference, pp. 608–612. ICCC, Slovakia (2016)Google Scholar
  9. 9.
    Dulf, E.H., Pop, C.I., Dulf, F.V.: Fractional calculus in C-13 separation column control. Signal Image Video Processing, 6(3), 479–485Google Scholar
  10. 10.
    Muresan, C.I., Dulf, E.H., Both, R.: Vector based tuning and experimental validation of fractional order PI/PD controllers. J. Nonlinear Dyn. 84(1), 179–188 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Muresan, C.I., Dutta, A., Dulf, E.H., et al.: Tuning algorithms for fractional order internal model controllers for time delay processes. Int. J. Control. 89(3), 579–593 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dulf, E.H., Dulf, F.V., Pop, C.I.: Fractional model of the cryogenic (13C) isotope separation column. Chem. Eng. Commun. 202(12), 1600–1606 (2015)CrossRefGoogle Scholar
  13. 13.
    Dulf, E.H., Muresan, C.I., Unguresan, M.L.: Modeling the (15N) isotope separation column. J. Math. Chem. 52(1), 115–131 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cohen, K.: The Theory of Isotope Separation as Applied to the Large-Scale Production of U235. McGraw-Hill Book Company Inc., New York (1951)Google Scholar
  15. 15.
    Muresan, C.I., Dulf, E.H., Both, R.: Comparative analysis of different control strategies for a train of cryogenic 13C separation columns. Chem. Eng. Technol. 38, 619–631 (2015)CrossRefGoogle Scholar
  16. 16.
    Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional Order Systems and Control – Fundamentals and Applications Advanced Industrial Control Series. Springer-Verlag, London (2010)CrossRefGoogle Scholar
  17. 17.
    Muresan, C.I., Dulf, E.-H., Both, R.: Vector-based tuning and experimental validation of fractional-order PI/PD controllers. Nonlinear Dyn. 84(1), 179–188 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-bandcomplex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Eva-H. Dulf
    • 1
    Email author
  • Cristina-I. Muresan
    • 1
  • Clara M. Ionescu
    • 2
  1. 1.Department of AutomationTechnical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Department of Electrical energy, Systems and Automation, Research group on Dynamical Systems and ControlGhent UniversityGhentBelgium

Personalised recommendations