Mathematical Methods in Engineering pp 213-244 | Cite as
Certain Fractional Integrals and Solutions of Fractional Kinetic Equations Involving the Product of S-Function
- 2 Citations
- 507 Downloads
Abstract
The aim of the present work is to establish certain new fractional integral by applying the Saigo hypergeometric fractional integral operators, and images of the resulting formulas involving the product of S-function are also presented by employing some useful integral transforms. Furthermore, we develop a new and further generalized form of the fractional kinetic equation involving the product of S-function. The manifold generality of the S-function is discussed in terms of the solution of the fractional kinetic equation, and their graphical and numerical interpretation is presented in the present paper. The results obtained here are quite general in nature and capable of yielding a large number of known and (presumably) new results.
References
- 1.Agarwal, P., Ntouyas, S.K., Jain, S., Chand, M., Singh, G.: Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform. Alexandria Eng. J. 57, 6 (2017)Google Scholar
- 2.Bateman, H., Erdelyi, A.: Tables of Integral Transforms. McGraw-Hill Book Co., New York (1954)Google Scholar
- 3.Chand, M., Prajapati, J.C., Bonyah, E.: Fractional integrals and solution of fractional kinetic equations involving k-Mittag-Leffler function. Trans. A. Razmadze Math. Inst. 171(2), 144–166 (2017)MathSciNetCrossRefGoogle Scholar
- 4.Chaurasia, V.B.L., Pandey, S.C.: On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions. Astrophys. Space Sci. 317(3–4), 213–219 (2008)CrossRefGoogle Scholar
- 5.Chouhan, A., Sarswat, S.: On solution of generalized Kinetic equation of fractional order. Int. J. Math. Sci. Appl. 2(2), 813–818 (2012)Google Scholar
- 6.Chouhan, A., Purohit, S.D., Saraswat, S.: An alternative method for solving generalized differential equations of fractional order. Kragujevac J. Math. 37(2), 299–306 (2013)MathSciNetzbMATHGoogle Scholar
- 7.Daiya, J., Ram, J.: Fractional calculus of generalized k-Mittag-Leffler function. J. Rajasthan Acad. Phys. Sci. 15(1), 89–96 (2016)MathSciNetzbMATHGoogle Scholar
- 8.Dıaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer k-symbol. Divulgaciones Matemáticas 15(2), 179–192 (2007)MathSciNetzbMATHGoogle Scholar
- 9.Dorrego, G.A., Cerutti, R.A.: The k-Mittag-Leffler function. Int. J. Contemp. Math. Sci. 7(15), 705–716 (2012)MathSciNetzbMATHGoogle Scholar
- 10.Gupta, A., Parihar, C.L.: On solutions of generalized kinetic equations of fractional order. Bol. Soc. Paran. Mat. 32(1), 183–191 (2014)MathSciNetGoogle Scholar
- 11.Gupta, V.G., Sharma, B., Belgacem, F.B.M.: On the solutions of generalized fractional kinetic equations. Appl. Math. Sci. 5(19), 899–910 (2011)MathSciNetzbMATHGoogle Scholar
- 12.Haubold, H.J., Mathai, A.M.: The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 273(1), 53–63 (2000)CrossRefGoogle Scholar
- 13.Kilbas, A.A., Sebastian, N.: Generalized fractional integration of Bessel function of the first kind. Integral Transforms Spec. Funct. 19(12), 869–883 (2008)MathSciNetCrossRefGoogle Scholar
- 14.Kiryakova, V.: All the special functions are fractional differintegrals of elementary functions. J. Phys. A Math. Gen. 30(14), 50–85 (1997)MathSciNetCrossRefGoogle Scholar
- 15.Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, New York (1993)Google Scholar
- 16.Mittag-Leffler, G.M.: Sur la representation analytiqie dune fonction monogene cinquieme note. Acta Math. 29(1), 101–181 (1905)MathSciNetCrossRefGoogle Scholar
- 17.Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Lefflerfunction in the kernel. Yokohoma Math. J. 19, 7–15 (1971)zbMATHGoogle Scholar
- 18.Romero, L., Cerutti, R., Luque, L.: A new fractional Fourier transform and convolutions products. Int. J. Pure Appl. Math. 66(4), 397–408 (2011)MathSciNetzbMATHGoogle Scholar
- 19.Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos Interdisciplinary J. Nonlinear Sci. 7(4), 753–764 (1997)MathSciNetCrossRefGoogle Scholar
- 20.Saxena, R.K., Kalla, S.L.: On the solutions of certain fractional kinetic equations. Appl. Math. Comput. 199(2), 504–511 (2008)MathSciNetzbMATHGoogle Scholar
- 21.Saxena, R.K., Daiya, J.: Integral transforms of the S-functions. Le Mathematiche. LXX, 147–159 (2015)Google Scholar
- 22.Saxena, R.K., Mathai, A.M., Haubold, H.J.: On fractional kinetic equations. Astrophys. Space Sci. 282(1), 281–287 (2002)CrossRefGoogle Scholar
- 23.Saxena, R.K., Mathai, A.M., Haubold, H.J.: On generalized fractional kinetic equations. Physica A Stat. Mech. Appl. 344(3), 657–664 (2004)MathSciNetCrossRefGoogle Scholar
- 24.Saxena, R.K., Mathai, A.M., Haubold, H.J.: Solution of generalized fractional reaction-diffusion equations. Astrophys. Space Sci. 305(3), 305–313 (2006)CrossRefGoogle Scholar
- 25.Sharma, K.: Application of fractional calculus operators to related areas. Gen. Math. Notes. 7(1), 33–40 (2011)Google Scholar
- 26.Sharma, K., Jain, R.: A note on a generalized M-series as a special function of fractional calculus. Fractional Calculus Appl. Anal. 12(4), 449–452 (2009)MathSciNetzbMATHGoogle Scholar
- 27.Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336(2), 797–811 (2007)MathSciNetCrossRefGoogle Scholar
- 28.Spiegel, M.R.: Laplace Transforms. McGraw-Hill, New York (1965)Google Scholar
- 29.Sneddon, I.N.: The Use of Integral Transforms. Tata McGraw-Hill, New Delhi (1979)zbMATHGoogle Scholar
- 30.Srivastava, H.M., Karlsson, P.-W.: Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester). John Wiley and Sons, New York/Chichester/Brisbane and Toronto (1985)Google Scholar
- 31.Srivastava, H.M., Saxena, R.K.: Operators of fractional integration and their applications. Appl. Math. Comput. 118(1), 1–52 (2001)MathSciNetzbMATHGoogle Scholar
- 32.Srivastava, H.M., Tomovski, Ž.: Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009)MathSciNetzbMATHGoogle Scholar
- 33.Srivastava, H.M., Lin, S.-D., Wang, P.-Y.: Some fractional-calculus results for the-function associated with a class of Feynman integrals. Russian J. Math. Phys. 13(1), 94–100 (2006)MathSciNetCrossRefGoogle Scholar
- 34.Wiman, A.: Über den Fundamentalsatz in der Teorie der Funktionen E a(x). Acta Math. 29(1), 191–201 (1905)MathSciNetCrossRefGoogle Scholar
- 35.Zaslavsky, G.M.: Fractional kinetic equation for Hamiltonian chaos. Phys. D Nonlinear Phenom. 76(1–3), 110–122 (1994)MathSciNetCrossRefGoogle Scholar