Mathematical Methods in Engineering pp 193-212 | Cite as
A New Numerical Approximation of Fractional Differentiation: Upwind Discretization for Riemann-Liouville and Caputo Derivatives
- 5 Citations
- 532 Downloads
Abstract
A new numerical scheme for fractional differentiation is developed in this paper. The powerful numerical scheme known as upwind is used to establish a numerical approximation for the Riemann-Liouville and Caputo fractional operators. Using the Crank-Nicolson approach and the upwind first-order and second-order approximation, a new numerical scheme is developed. The new numerical approximation is then used to approximate for 0 < α < 1 and 1 < α < 2 the Riemann-Liouville fractional derivative. A detailed numerical analysis to prove the convergence and accuracy of the new numerical scheme is presented. The new approximation is then applied to solve numerically the advection equation. This new numerical scheme will be very useful to solving fractional differential equations.
Keywords
Caputo Fractional Derivative Crank-Nicolson Approach Upwind Numerical Scheme Riemann Liouville Derivative Second-order UpwindReferences
- 1.Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations (PDF). J. Comput. Phys. 79, 12–49 (1988)MathSciNetCrossRefGoogle Scholar
- 2.Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics, Chapter 5, p. 104. Wiley, New York (1995)Google Scholar
- 3.Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5, 243–255 (1952)MathSciNetCrossRefGoogle Scholar
- 4.Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Taylor & Francis (1980). ISBN: 978-0-89116-522-4Google Scholar
- 5.Hirsch, C.: Numerical Computation of Internal and External Flows. Wiley (1990). ISBN: 978-0-471-92452-4Google Scholar
- 6.Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik 47, 271–306 (1959)Google Scholar
- 7.Liou, M.-S., Steffen, C.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)MathSciNetCrossRefGoogle Scholar
- 8.Liou, M.-S.: A sequel to AUSM: AUSM+. J. Comput. Phys. 129, 364–382 (1996)MathSciNetCrossRefGoogle Scholar
- 9.Wada, Y., Liou, M.-S.: An accurate and robust flux splitting scheme for shock and contact discontinuities. SIAM J. Sci. Comput. 18, 633–657 (1997)MathSciNetCrossRefGoogle Scholar
- 10.Liou, M.-S.: A sequel to AUSM, part II: AUSM+-up. J. Comput. Phys. 214, 137–170 (2006)MathSciNetCrossRefGoogle Scholar
- 11.Edwards, J.R., Franklin, R., Liou, M.-S.: Low-diffusion flux-splitting methods for real fluid flows with phase transitions. AIAA J. 38, 1624–1633 (2000)CrossRefGoogle Scholar
- 12.Chang, C.-H., Liou, M.-S.: A new approach to the simulation of compressible multifluid flows with AUSM+ scheme. In: 16th AIAA CFD Conference on AIAA Paper 2003-4107, Orlando, 23–26 June 2003Google Scholar
- 13.Edwards, J.R., Liou, M.-S.: Low-diffusion flux-splitting methods for flows at all speeds. AIAA J. 36, 1610–1617 (1998)CrossRefGoogle Scholar
- 14.Kim, K.H., Kim, C., Rho, O.: Methods for the accurate computations of hypersonic flows I. AUSMPW+ scheme. J. Comput. Phys. 174, 38–80 (2001)Google Scholar
- 15.Mary, I., Sagaut, P.: Large Eddy simulation of flow around an airfoil near stall. AIAA J. 40, 1139–1145 (2002)CrossRefGoogle Scholar