Mathematical Methods in Engineering pp 175-191 | Cite as
Exact Travelling Wave Solutions for Local Fractional Partial Differential Equations in Mathematical Physics
- 12 Citations
- 556 Downloads
Abstract
In the article, we investigate the exact travelling wave solutions for the linear and nonlinear local fractional partial differential equations. The non-differential exact solutions of the fractal diffusion, Korteweg-de Vries, and Boussinesq equations via local fractional derivative are discussed in detail. The local fractional calculus formulations are efficient in description of fractal and complex behaviors of the linear and nonlinear mathematical physics.
Keywords
Exact Traveling Wave Solutions Local Fractional Derivative (LFD) Boussinesq Equations Fractional Diffusion Nonlinear Mathematical PhysicsNotes
Acknowledgements
This work is supported by the State Key Research Development Program of the People’s Republic of China (Grant No.2016YFC0600705), the Natural Science Foundation of China (Grant No.51323004), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD2014).
References
- 1.Yang, X.J.: Local Fractional Functional Analysis & Its Applications. Asian Academic Publisher Limited, Hong Kong (2011)Google Scholar
- 2.Yang, X.J.: Advanced Local Fractional Calculus and Its Applications. World Science Publisher, New York (2012)Google Scholar
- 3.Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic, Amsterdam (2015)zbMATHGoogle Scholar
- 4.Cattani, C., Srivastava, H.M., Yang, X.J.: Fractional Dynamics. De Gruyter Open, Berlin (2015)CrossRefGoogle Scholar
- 5.Sarikaya, M., Budak, H.: Generalized Ostrowski type inequalities for local fractional integrals. Proc. Am. Math. Soc. 145(4), 1527–1538 (2017)MathSciNetzbMATHGoogle Scholar
- 6.Akkurt, A., Sarikaya, M.Z., Budak, H., Yildirim, H.: Generalized Ostrowski type integral inequalities involving generalized moments via local fractional integrals. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A. Matemáticas 111(3), 797–807 (2017)Google Scholar
- 7.Choi, J., Set, E., Tomar, M.: Certain generalized Ostrowski type inequalities for local fractional integrals. Commun. Kor. Math. Soc. 32(3), 601–617 (2017)MathSciNetzbMATHGoogle Scholar
- 8.Erden, S., Sarikaya, M.Z.: Generalized Pompeiu type inequalities for local fractional integrals and its applications. Appl. Math. Comput. 274, 282–291(2016)MathSciNetGoogle Scholar
- 9.Tunç, T., Sarıkaya, M.Z., Srivastava, H.M.: Some generalized Steffensen’s inequalities via a new identity for local fractional integrals. Int. J. Anal. Appl. 13(1), 98–107 (2016)Google Scholar
- 10.Liu, Q., Sun, W.: A Hilbert-type fractal integral inequality and its applications. J. Inequal. Appl. 2017(1), 83 (2017)MathSciNetCrossRefGoogle Scholar
- 11.Mo, H., Sui, X.: Hermite–Hadamard-type inequalities for generalized s-convex functions on real linear fractal set \({\mathrm {R}}^\alpha \left ( {0<\alpha <1} \right )\). Math. Sci. 11(3), 241–246 (2017)Google Scholar
- 12.Vivas, M., Hernández, J., Merentes, N.: New Hermite-Hadamard and Jensen type inequalities for h-convex functions on fractal sets. Revista Colombiana de Matemáticas 50(2), 145–164 (2016)MathSciNetCrossRefGoogle Scholar
- 13.Saleh, W., Kiliçman, A.: On generalized s-convex functions on fractal sets. JP J. Geom. Topol. 17(1), 63 (2015)MathSciNetCrossRefGoogle Scholar
- 14.Kiliçman, A., Saleh, W.: Notions of generalized s-convex functions on fractal sets. J. Inequal. Appl. 2015(1), 312 (2015)MathSciNetCrossRefGoogle Scholar
- 15.Kilicman, A., Saleh, W.: On some inequalities for generalized s-convex functions and applications on fractal sets. J. Nonlinear Sci. Appl. 10(2), 583–594 (2017)MathSciNetCrossRefGoogle Scholar
- 16.Yang, X.J., Machado, J.T., Cattani, C., Gao, F.: On a fractal LC-electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 47, 200–206 (2017)CrossRefGoogle Scholar
- 17.Zhao, X.H., Zhang, Y., Zhao, D., Yang, X.J.: The RC circuit described by local fractional differential equations. Fundamenta Informaticae 151(1–4), 419–429 (2017)MathSciNetCrossRefGoogle Scholar
- 18.Yang, X.J., Gao, F., Srivastava, H.M.: New rheological models within local fractional derivative. Rom. Rep. Phys. 69, 113 (2017)Google Scholar
- 19.Yang, X.J., Tenreiro Machado, J.A., Baleanu, D., Cattani, C.: On exact traveling-wave solutions for local fractional Korteweg-de Vries equation. Chaos Interdisciplinary J. Nonlinear Sci. 26(8), 084312 (2016)MathSciNetCrossRefGoogle Scholar
- 20.Baleanu, D., Khan, H., Jafari, H., Khan, R.A.: On the exact solution of wave equations on cantor sets. Entropy 17(9), 6229–6237 (2015)MathSciNetCrossRefGoogle Scholar
- 21.Debbouche, A., Antonov, V.: Finite-dimensional diffusion models of heat transfer in fractal mediums involving local fractional derivatives. Nonlinear Stud. 24(3), 527–535 (2017)MathSciNetzbMATHGoogle Scholar
- 22.Jafari, H., Jassim, H.K., Tchier, F., Baleanu, D.: On the approximate solutions of local fractional differential equations with local fractional operators. Entropy 18(4), 150 (2016)CrossRefGoogle Scholar
- 23.Yang, X.J., Machado, J.A., Nieto, J.J.: A new family of the local fractional PDEs. Fundamenta Informaticae 151(1–4), 63–75 (2017)MathSciNetCrossRefGoogle Scholar
- 24.Yang, X.J., Machado, J.T., Hristov, J.: Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. Nonlinear Dyn. 84(1), 3–7 (2016)MathSciNetCrossRefGoogle Scholar
- 25.Yang, X.J., Machado, J.T., Baleanu, D.: On exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals 25(4) 1740006 (2017)MathSciNetCrossRefGoogle Scholar
- 26.Yang, X.J., Gao, F., Srivastava, H.M.: Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations. Comput. Math. Appl. 73(2), 203–210 (2017)MathSciNetCrossRefGoogle Scholar
- 27.Yang, X.J., Gasimov, Y.S., Gao, F., Allahverdiyeva, N.: Travelling-wave solutions for Klein-Gordon and Helmholtz equations on Cantor sets. Proc. Inst. Math. Mech. 43(1), 123–131 (2017)MathSciNetzbMATHGoogle Scholar
- 28.Yang, X.J., Gao, F., Srivastava, H.M.: A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math. (2017). https://doi.org/10.1016/j.cam.2017.10.007 zbMATHGoogle Scholar
- 29.Griffiths, G., Schiesser, W.E.: Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with MATLAB and Maple. Academic, New York (2010)zbMATHGoogle Scholar
- 30.Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, Berlin/Heidelberg (2010)Google Scholar