Mathematical Methods in Engineering pp 139-152 | Cite as
Multiscale Characterization and Model for the Dynamic Behavior of Ferroelectric Materials Using Fractional Operators
- 540 Downloads
Abstract
Fractional operators are well adapted to model dynamic dielectric losses of ferroelectric materials. Where usual integer derivative operators are always limited to a relatively weak frequency bandwidth, an approach based on fractional derivatives provides good simulation results even beyond working frequency of industrial systems. In this article, we determined the link between a high excitation (> 2 kV/mm), weak frequency (< 100 Hz) dynamic dielectric fractional hysteresis model and the weak excitation stress level (< 5 V/mm) but large frequency bandwidth (40 Hz < f < 40 MHz) well known as dielectric permittivity fractional models (Cole-Cole model and Havriliak-Negami). The good comparison of simulation/measure was obtained considering the same sample and the same dynamic parameters (fractional order together with nonlinear dry friction parametrization) in both cases. This allows attributing the same physical origin of the dielectric losses simulated here (the dielectric relaxation). Furthermore it is also possible to limit the ferroelectric dynamic characterization with the impedance analyzer measure (where all the model parameters can be set) and to anticipate the high electrical amplitude stress behavior in simulation.
Keywords
Cole-Cole Model Hysteresis Model Impedance Analyzer Measure Large Frequency Bandwidth Fractional DerivativeNotes
Acknowledgements
The authors would like to thank for the support from the Polish-French collaboration project (Polonium).
References
- 1.Cillesen, J.F.M., Giesbers, J.B., Weening, R.P., Wolf, R.M.: A ferroelectric transparent thin-film transistor. Appl. Phys. Lett. 68, 3650–3652, (1996)CrossRefGoogle Scholar
- 2.Prins, M.W.J., Zinnemers, S.E., Cillessen, J.F.M., Giesberg, J.B.: Depletion-type thin-film transistors with a ferroelectric insulator. Appl. Phys. Lett. 70, 458–460 (1997)CrossRefGoogle Scholar
- 3.Yong, T.K., Dong, S.S.: Memory window of Pt/SrBi2Ta2O9/CeO2/SiO2/Si structure for metal ferroelectric insulator. Appl. Phys. Lett. 71, 3507–3509 (1997)CrossRefGoogle Scholar
- 4.Boser, 0.: Statistical theory of hysteresis in ferroelectric materials. J. Appl. Phys. 62, 1344–1348 (1987)Google Scholar
- 5.Morita, T., Ishii, Y., Fukai, I.: Hysteresis model using distribution susceptibility. J. Appl. Phys. 73, 7025–7029 (1993)CrossRefGoogle Scholar
- 6.Potter, B.G. Jr., Tikare, V., Tuttle, B.A.: Monte carlo simulation of ferroelectric phase transition. J. Appl. Phys. 87, 4415–4424 (2000)CrossRefGoogle Scholar
- 7.Bartic, A.T., Wouters, D.J., Maes, H.E., Rickes, J.T., Waser, R.M.: Preisach model for the simulation of ferroelectric capacitors. J. Appl. Phys. 89, 3420–3425 (2001)CrossRefGoogle Scholar
- 8.Sivasubramanian, S., Widom, A., Strivastava, Y.: Equivalent circuit and simulations for the Landau-Khalatniko model of ferroelectric hysteresis. IEEE Trans. Ultras. Ferro. Freq. Cont. 50, 950–957 (2003)CrossRefGoogle Scholar
- 9.Debye, P.: Zur Theorie der anomalen dispersion im Gebiete der langwelligen Elektrischen Strahlung. Ver. Deut. Phys. Gesell. 15 777–793 (1913)Google Scholar
- 10.Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics – I alternating current characteristics. J. Chem. Phys. 9 341–352, (1941)CrossRefGoogle Scholar
- 11.Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics – II direct current characteristics. J. Chem. Phys. 10, 98–105 (1942)CrossRefGoogle Scholar
- 12.Havriliak, S., Negami, S.: A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8, 161–210 (1967)CrossRefGoogle Scholar
- 13.Ducharne, B., Guyomar, D., Sebald, G.: Low frequency modelling of hysteresis behaviour and dielectric permittivity in ferroelectric ceramics under electric field. J. Phys. D: Appl. Phys. 40, 551–555 (2007)CrossRefGoogle Scholar
- 14.Guyomar, D., Ducharne, B., Sebald, G.: Time fractional derivatives for voltage creep in ferroelectric materials: theory and experiment. J. Phys. D: Appl. Phys. 41, 125410 (2008)CrossRefGoogle Scholar
- 15.Zhang, B., Ducharne, B., Guyomar, D., Sebald, G.: Energy harvesting based on piezoelectric Ericsson cycles in a piezo ceramic material. Eur. Phys. J. S.T. 222, 1733–1743 (2013)Google Scholar
- 16.Guyomar, D., Ducharne, B., Sebald, G.: High frequency bandwidth polarization and strain control using a fractional derivative inverse model. Smart Mater. Struct. 19, 045010 (2010)CrossRefGoogle Scholar
- 17.Rouleau, L., Deu, J.F., Legay, A., Le Lay, F.: Application of Kramers-Kronig relations to time-temperature superposition for viscoelastic materials. Mech. Mater. 65, 66–75 (2013)CrossRefGoogle Scholar
- 18.Nguyen, D.Q., Lebey, T., Castelan, P., Bley, V., Boulos, M., Guillemet-Fritsch, S., Combetten, C., Durand, B.: Electrical and physical characterization of bulk ceramics and thick layers of barium titanate manufactured using nanopowders. J. Mat. Eng. Perf. 16, 626–634 (2007)CrossRefGoogle Scholar
- 19.Weron, K., Klauzer, A.: Probabilistic basis for the Cole-Cole relaxation law. Fermelecrrics 236, 59–69 (2000)CrossRefGoogle Scholar
- 20.Rekanos, I.T., Yioultsis, T.V.: Approximation of GrünwaldLetnikov fractional derivative for FDTD modeling of Cole-Cole media. IEEE Trans. Magn. 50, 7004304 (2014)CrossRefGoogle Scholar
- 21.Lewandowski, M., Orzylowski, M.: Fractional-order models: the case study of the supercapacitor capacitance measurement. Bull. Pol. Acad. Sci. Chem. 65, 449–457 (2017)Google Scholar