Skip to main content

Seismic Design of Shallow and Deep Foundations

  • Chapter
  • First Online:
  • 587 Accesses

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

This chapter deals with the design of shallow and deep foundation under seismic load. However, those who are conversant with design of structures under seismic load might wonder as to what is so special about it? Most of the codes around the world recommend an increase in allowable bearing capacity of soil by about 25% under seismic load combination for design of shallow foundations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here, DL = dead load, LL = live load, EL = earthquake load.

  2. 2.

    Here, we have presumed that the reader has some background on finite difference method.

  3. 3.

    A typical geotechnical engineer’s approach.

References

  • ACI-351.3R-04. (2011). Foundation for dynamic equipments. American Concrete Institute Committee # 351.

    Google Scholar 

  • Banerjee, P. K., & Sen, R. (1987). Dynamic behavior of axially and laterally loaded piles and pile groups, Chapter 3. In P. K. Banerjee & R. Butterfield (Eds.), Developments in soil mechanics and foundation engineering (3rd ed.). London: Elsevier, Applied Science.

    Google Scholar 

  • Bathe, K. J. (1996). Finite element method in engineering procedure. New Delhi: Prentice Hall Pvt. Limited.

    Google Scholar 

  • Berrill, J. B., Christensen, S. A., Kennan, R. P., Okada, W., & Pettinga, J. R. (2001). Case study of lateral spreading forces on a piled foundation. Geotechnique, 51(6), 501–517.

    Article  Google Scholar 

  • Bhattacharya, S. (2003). Pile Instability during earthquake liquefaction. Ph.D. thesis of Subhamoy Bhattacharya, Cambridge University.

    Google Scholar 

  • Bowles, J. E. (1968). Foundation analysis and design. NY: McGraw-Hills.

    Google Scholar 

  • Brinch Hansen, J. (1961). A general formula for bearing capacity. A revised and extended formula for bearing capacity. The Danish Geotechnical Institute. Bulletin No. 11. Copenhagen.

    Google Scholar 

  • Brinch Hansen, J. (1970). A revised and extended formula for bearing capacity Danish Geotechnical Institute Bulletin # 98, pp. 5–11.

    Google Scholar 

  • Broms, B. B. (1964). Lateral resistance of piles in cohesive soils. Journal of the Soil Mechanics and Foundations Division ASCE, 90(2), 27–63.

    Google Scholar 

  • Budhu, M., & Al Karni, A. (1993). Seismic bearing capacity of soil. Geotechnique, 43(1), 181–187.

    Article  Google Scholar 

  • Chandrashekharan, V. (1974). Analysis of Pile foundation under earthquake and dynamic loads. Ph.D. Thesis, University of Roorkee, Roorkee, UP.

    Google Scholar 

  • Chen, W. F., & Davidson, H. L. (1973). Bearing capacity determination by limit analysis. Journal of the Soil Mechanics and Foundations Division ASCE, 99, 443–449.

    Google Scholar 

  • Chowdhury, I., & Dasgupta, S. P. (2008). Dynamics of structures and foundation a unified approach (Vol. II). Leiden, Holland: Taylor and Francis.

    Google Scholar 

  • Chowdhury, I., & Dasgupta, S. P. (2010). Estimation of lateral load capacity of short piles under earthquake force (May 24). In International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Paper 20. http://scholarsmine.mst.edu/icrageesd/05icrageesd/session05/20.

  • Chowdhury, I., & Dasgupta, S. P. (2012). Seismic response of piles under earthquake force. Indian Geotechnical Journal, 42(2).

    Article  Google Scholar 

  • Chowdhury, I., & Dasgupta, S. P. (2015). Dynamic bearing capacity of shallow foundation under earthquake force. Indian Geotechnical Journal (May).

    Google Scholar 

  • Chowdhury, I., & Dasgupta, S. P. (2016). Dynamic bearing capacity of shallow foundation under earthquake force. Indian Goetechnical Journal, 47(1), 36–45.

    Article  Google Scholar 

  • Choudhury, D., & Subba Rao, K. S. (2005). Seismic bearing capacity of shallow strip footings. Journal of Geotechnical and Geological Engineering, 23, 403–418.

    Article  Google Scholar 

  • Chowdhury, I., & Tilak, R. (2012). Effect of bedrock level on Dynamic bearing capacity of Shallow Foundation under earthquake load. In International Symposium on Engineering Uncertainty Safety Assessment and Management Bengal Engineering College, Jan 4–6, 2012.

    Google Scholar 

  • Chowdhury, I., & Singh, J. P. (2010). Do DSSI attenuate dynamic response of building? In Proceedings 14th symposium on Earthquake Engineering IIT Roorkee (Vol. 1, pp. 644–654).

    Google Scholar 

  • Chowdhury, I., Ghosh, A., & Dasgupta, S. P. (2015). Stiffness degradation and damping augmentation of soil under earthquake loading. Electronic Journal of Geotechnical Engineering (Vol. 20), Bundle 9, 2015 Oklahama, USA.

    Google Scholar 

  • Christchurch City Council. (2010). Construction standard specification, Part 4: Water Supply (p. 59) (Cubrinovski M, Hughes M, Bradley B, McCahon I, McDonald Y, Simpson H, Cameron R, Christison).

    Google Scholar 

  • Cubrinovski, M., Haskell, J. J. M., & Bradley, B. (2010). Soil pile interaction in liquefying soils—modeling issues. In: R. P. Orense, N. Chuow, & M. J. Pender (Eds.), Soil foundation structure interaction. London: Taylor and Francis.

    Google Scholar 

  • Cubrinovski, M., Kokusho, T., & Ishihara, K. (2006). Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils. Soil Dynamics and Earthquake Engineering, 26, 275–286.

    Article  Google Scholar 

  • Das, B. M. (1987). Theoretical foundation engineering developments in geotechnical engineering (Vol. 47). Amsterdam: Elsevier Publications.

    Google Scholar 

  • Davisson, M. T. & Prakash, S. (1963). A review of soil pole behavior. Highway Research Record No. 39 (pp. 25–48).

    Google Scholar 

  • Davisson, M. T. (1970). Lateral load capacity of piles. Washington, DC: Highway Research Record, Transportation Research Board.

    Google Scholar 

  • Den Hartog, J. P. (1952). Advanced strength of materials. New York: Dover Publication.

    Google Scholar 

  • Dobry, R., & Gazetas, G. (1988). Simple method for dynamic stiffness and damping of floating pile groups. Geotechnique, 38(4), 557–574.

    Article  Google Scholar 

  • Dobry, R., & Abdoun, T. (2001). Recent studies on seismic centrifuge modeling of liquefaction and its effect on deep foundations. State-of-the-Art Report (SOAP3). In Proceedings of the 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (Vol. 2). San Diego, CA, March 26–31.

    Google Scholar 

  • Dormieux, L., & Pecker, A. (1995). Seismic bearing capacity of cohesion less soil. Journal of Geotechnical Engineering ASCE, 121(3), 300–303.

    Article  Google Scholar 

  • Dunkerley, S. (1894). On the whirling and vibration of shafts. Philosophical Transactions of the Royal Society, 185, 279–360 (London, UK).

    Article  Google Scholar 

  • Finn, W. D. L., & Thavaraj, T. (2001). Deep foundations in liquefiable soil, SOAP 1. In Proceedings of the 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego.

    Google Scholar 

  • Griffith, D. V. (1982). Computation of bearing capacity factors using finite elements. Geotechnique, 32, 195–202.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1956). Magnitude and energy of earthquakes. Annali di Geofisica, 9, 1–15.

    Google Scholar 

  • Haigh, S. K., & Madabhushi, S. P. G. (2002). Centrifuge modelling of lateral spreading past pile foundations. In International Conference on Physical Modelling in Geotechnics, St John’s, Newfoundland, Canada, July 2002.

    Google Scholar 

  • Hamada, M. (2000). Performance of foundations against liquefaction-induced permanent ground displacement. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, Paper No. 1754.

    Google Scholar 

  • Hurty, W. C., & Rubinstein, M. F. (1967). Dynamics of structures. New Delhi: Prentice-Hall of India.

    Google Scholar 

  • Ishihara, T., Midorikawa, M., & Azuhata, T. (2009). Modal properties and free vibration of uplifting behavior of multistory buildings modeled as uniform shear-beam. Journal of Structural and Construction Engineering, AIJ, 74(640), 1055–1061. (in Japanese).

    Article  Google Scholar 

  • IS-2911/1893. Bureau of Indian Standards. New Delhi, India.

    Google Scholar 

  • IS 1893 Part1. (2002). Criteria for earthquake resistant design of structures. Bureau of Indian Standards. New Delhi, India.

    Google Scholar 

  • IS 2911(Part 1 to 4). Design and construction of pile foundations—code of practice. Bureau of Indian Standards. New Delhi, India.

    Google Scholar 

  • IS-6403. (1997). Code of practice for determination of bearing capacity of shallow foundations. Bureau of Indian Standards. New Delhi, India.

    Google Scholar 

  • Karnovsky, I., & Olga, L. (2001). Formulas for structural dynamics (p. 535). New York, N.Y.: McGraw-Hill, Inc.

    Google Scholar 

  • Kishida, H. (1967). Ultimate bearing capacity of piles driven into loose sand. Soils and Foundations, 7(3), 20–29.

    Article  Google Scholar 

  • Kramer, S. (1996). Geotechnical earthquake engineering. New Delhi, India: Pearson Education.

    Google Scholar 

  • Kreyszig. (1969). Advanced engineering mathematics (2nd ed.). Wiley Eastern: New Delhi.

    Google Scholar 

  • Kumar, J., & Rao, V. B. K. M. (2002). Seismic bearing capacity of spread foundations. Geotechnique, 52(2), 79–88.

    Article  Google Scholar 

  • Manoharan, N., & Dasgupta, S. P. (1995). Bearing capacity of surface footings by finite elements. Journal of Computers and Strucutres, 4, 563–586.

    Article  Google Scholar 

  • Manos, G. C., & Clough, R. W. (1982). Further study of the earthquake response of a broad cylindrical tank Model. EERC Report No 82/07. UBC, California.

    Google Scholar 

  • Meyerhof, G. G. (1951). The ultimate bearing capacity of foundations. Geotechnique, 301–332.

    Article  Google Scholar 

  • Meyerhof, G. G. (1953). The bearing capacity of foundation under eccentric and inclined load. In Proceedings 3rd International Conference in Soil Mechanics and Foundation Engineering (Vol. 1, pp 440–445) Zurich.

    Google Scholar 

  • Meyerhof, G. G. (1959). Compaction of sands and bearing capacity of piles. ASCE Journal of Soil Mechanics and Foundation Division (pp. 1–29). SM6.

    Google Scholar 

  • Meyerhof, G. G. (1963). Some recent research on bearing capacity of foundations. Canadian Geotechnical Journal, 1(1), 16–26.

    Article  Google Scholar 

  • Meyerhof, G. G. (1974). Ultimate bearing capacity of footings on sand layer overlying clay. Candian Geotechnical Journal, 11(2), 224–229.

    Article  Google Scholar 

  • Matlock, H., & Reese, L. C. (1960). Generalized solutions for laterally loaded piles. Journal of the Soil Mechanics and Foundations Division, 86(5), 91–97.

    Google Scholar 

  • Meirovitch, L. (1967). Analytical methods in vibration. London: Macmillan Publication.

    Google Scholar 

  • Novak, M. (1974). Dynamic stiffness and damping of piles. Canadian Geotechnical Journal, 11, 574–598.

    Article  Google Scholar 

  • Novak, M., & El Sharnouby, B. (1983). Stiffness and damping constants for single piles. Journal of Geotechnical Engineering Division, ASCE, 109, 961–974.

    Article  Google Scholar 

  • Paz, M. (1987). Structural dynamics. New Delhi: CBS Publishers Ltd.

    Google Scholar 

  • Pecker, A. (1996). Seismic bearing capacity of shallow foundations. In Proceedings XIth World Conference in Earthquake Engineering Mexico, Paper # 2076.

    Google Scholar 

  • Poulos, H. G. & Davis, E. H. (1980). Pile foundation analysis and design. Hoboken: Wiley.

    Google Scholar 

  • Peck, R. B., & Davisson, M. T. (1962). Discussion of “Design and Stability of Pile Groups Subjected to Lateral Loads”. Ph.D. thesis, University of Illinois.

    Google Scholar 

  • Penzien, J. (1970). Soil pile foundation interaction in earthquake engineering, R. L. Wiegel (Ed.), Englewood Cliff, New Jersey: Prentice Hall.

    Google Scholar 

  • Prakash, S., & Chandrashekharan, V. (1980). Analysis of piles in clay against earthquakes. Spring Convention ASCE (Portland, Oregon, April).

    Google Scholar 

  • Reese, L. C., & Matlock, H. (1956). Non-dimensional solutions for laterally loaded piles with soil modulus. Publication # 29. Bureau of Engineering Research, University of Texas Austin.

    Google Scholar 

  • Richards, R., Elms, D. G., & Budhu, M. (1993). Seismic bearing capacity and settlement of foundations. Journal of Geotechnical Engineering Division ASCE, 119(4), 662–674.

    Article  Google Scholar 

  • Ruigork, J. A. T. (2010). Laterally loaded piles models and measurements. Ph.D. thesis. Holland: Technical University of Delft.

    Google Scholar 

  • Sarma, S. K., & Iossefelis, I. S. (1990). Seismic bearing capacity factors of shallow strip footings. Geotechniqe, 40(2), 265–273.

    Article  Google Scholar 

  • Shames, I., & Dym, C. L. (1995). Energy and finite element method in structural mechanics. New Delhi, India: New Age Publisher.

    Google Scholar 

  • Soubra, A. (1997). Seismic bearing capacity of shallow strip footings. Proceedings Institution of Civil Engineers Geotechnical Engineering, 125(4), 230–241.

    Article  Google Scholar 

  • Soubra, A. H. (1999). Upper bound solutions for bearing capacity of foundations. Journal of Geotechnical Division ASCE, 125(1), 59–69.

    Google Scholar 

  • Tajimi, H. (1966). Earthquake response of Foundation Structures (in Japanese). Report, Faculty of Science and Engineering (pp. 1.1–3.5). Nihon University Tokyo.

    Google Scholar 

  • Terzaghi, K. (1943). Theoretical soil mechanics. USA: John Wiley Publication.

    Google Scholar 

  • Terzaghi, K., & Peck, R. B. (1982). Soil mechanics and foundation engineering. USA: John Wiley Publication.

    Google Scholar 

  • Timoshenko and Goodier. (1983). Theory of elasticity. NY: McGrawHill Book Company.

    Google Scholar 

  • Tokimatsu, K., & Aska, Y. (1998). Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake. In Soils and Foundations, Special Issue on Geotechnical Aspects of the January 17, 1995 Hyogoken-Nambu Earthquake (No. 2, pp. 163–178) (September).

    Article  Google Scholar 

  • Tokimatsu, K., Ibaraki, Y., & Arai, H. (2009). Dynamic soil properties back-calculated from strong motions recorded at two downhole arrays during the 2007 Niigata-ken Chuetsu-oki earthquakes. In Proceedings of the 6th International Conference on Urban Earthquake Engineering, Tokyo, Japan (pp. 485–489), March 3–4, 2009.

    Google Scholar 

  • Tomlinson, M. (2012). Pile design and construction practice. UK: Taylor and Francis Publication.

    Google Scholar 

  • Verruijt, A. (2010). An introduction to soil dynamics. Berlin: Springer.

    Chapter  Google Scholar 

  • Wilson, S. D., & Hills, D. E. (1967). How to determine lateral load capacity of piles. In Pile-Foundation Know How (41–45). Washington: Amer. Wood Press. Inst.

    Google Scholar 

  • Winkler, E. (1867). Die Lehre von der Elastizitat und Festigate. Prague, Czechaslovakia.

    Google Scholar 

  • Weaver, W., & Gere, J. M. (1980). Matrix analysis of framed structures (2nd ed.), New York: Van Nostrand Reinhold Company Inc.

    Google Scholar 

  • Yokoyama, K., Tamura, K., & Matsuo, O. (1997). Design methods of bridge foundations against soil liquefaction and liquefaction-induced ground flow. In Proceedings of the Second Italy–Japan Workshop on Seismic Design and Retrofit of Bridges (pp. 297–319).

    Google Scholar 

  • Zienkiewicz, O. C. (1970). Finite element method in engineering science. London: McGraw-Hill Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Chowdhury .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, I., Dasgupta, S.P. (2019). Seismic Design of Shallow and Deep Foundations. In: Earthquake Analysis and Design of Industrial Structures and Infra-structures. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-90832-8_6

Download citation

Publish with us

Policies and ethics