Skip to main content

Adenosine and Oxygen/Glucose Deprivation in the Brain

  • Chapter
  • First Online:
The Adenosine Receptors

Part of the book series: The Receptors ((REC,volume 34))

  • 1055 Accesses

Abstract

Extracellular adenosine concentrations in the brain increase dramatically during ischemia in concentrations that able to stimulate all (A1, A2A, A2B, and A3) receptors. Adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia mainly by reducing precocious excitotoxic phenomena. Unfortunately, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence indicates that A2A receptor antagonists administered early after ischemia provide protection centrally by reducing excitotoxicity. After ischemia, the primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e., microglia, and production or activation of inflammation mediators and blood cell infiltration. Evidences are that agonists at A2A, A2B, and A3 receptors mainly acting on blood and vascular endothelial cells provide protection by controlling neuroinflammation, endothelial leaking, and massive blood cell infiltration in the hours and days after brain ischemia. Since ischemia is a multifactorial pathology characterized by different events evolving in the time and protracted neuroinflammation is recognized as the predominant mechanism of secondary brain injury progression, adenosinergic drugs aimed at dampening damage in the hours/days after ischemia appear promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adén U, Lindström K, Bona E et al (1994) Changes in adenosine receptors in the neonatal rat brain following hypoxic ischemia. Brain Res Mol Brain Res 23:354–358

    Article  PubMed  Google Scholar 

  • Adén U, Halldner L, Lagercrantz H et al (2003) Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice. Stroke 34:739–744

    Article  PubMed  CAS  Google Scholar 

  • Baltos JA, Gregory KJ, White PJ et al (2016) Quantification of adenosine A1 receptor biased agonism: implications for drug discovery. Biochem Pharmacol 99:101–112

    Article  PubMed  CAS  Google Scholar 

  • Barone FC, Irving EA, Ray AM et al (2001) Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev 21:129–145

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund O, Shang M, Tonazzini I et al (2008) Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage. Eur J Pharmacol 596:6–13

    Article  PubMed  CAS  Google Scholar 

  • Bona E, Adén U, Gilland E et al (1997) Neonatal cerebral hypoxia-ischemia: the effect of adenosine receptor antagonists. Neuropharmacology 36:1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Borea PA, Gessi S, Bar-Yehuda S et al (2009) A3 adenosine receptor: pharmacology and role in disease. Handb Exp Pharmacol 193:297–327

    Article  CAS  Google Scholar 

  • Borea PA, Gessi S, Merighi S et al (2016) Adenosine as a multi-Signalling Guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37:419–434

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Boeynaems JM (2014) Purinergic signalling and immune cells. Purinergic Signal 10:529–564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butler M, Sanmugalingam D, Burton VJ et al (2012) Impairment of adenosine A3 receptor activity disrupts neutrophil migratory capacity and impacts innate immune function in vivo. Eur J Immunol 42:3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Chen GJ, Harvey BK, Shen H et al (2006) Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 84:1848–1855

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Qi Z, Luo Y et al (2014) Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 115:246–269

    Article  PubMed  Google Scholar 

  • Cheng P, Ren Y, Bai S et al (2015) Chronic cerebral ischemia induces Downregulation of A1 adenosine receptors during white matter damage in adult mice. Cell Mol Neurobiol 35:1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1990) Possible mechanisms limiting N-methyl-D-aspartate receptor overactivation and the therapeutic efficacy of N-methyl-D-aspartate antagonists. Stroke 21:III20–III22

    PubMed  CAS  Google Scholar 

  • Choi IY, Lee JC, Ju C et al (2011) A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats. Am J Pathol 179:2042–2052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coelho JE, Rebola N, Fragata I et al (2006) Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience 138:1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F et al (2007) New 2-arylpyrazolo[3,4-c]quinoline derivatives as potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation, and ligand-receptor modeling studies. J Med Chem 50:4061–4074

    Article  PubMed  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F et al (2008) Synthesis, ligand-receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists. Bioorg Med Chem 16:6086–6102

    Article  PubMed  CAS  Google Scholar 

  • Colotta V, Lenzi O, Catarzi D et al (2009) Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a new scaffold to develop potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation, and ligand-receptor modeling studies. J Med Chem 52:2407–2419

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM, Mons N, Karpen JW (1995) Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374:421–424

    Article  PubMed  CAS  Google Scholar 

  • Coppi E, Cellai L, Maraula G et al (2013) Adenosine A2A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures. Neuropharmacology 73:301–310

    Article  PubMed  CAS  Google Scholar 

  • Coppi E, Cellai L, Maraula G et al (2015) Role of adenosine in oligodendrocyte precursor maturation. Front Cell Neurosci 9:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corradetti R, Lo Conte G, Moroni F et al (1984) Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur J Pharmacol 104:19–26

    Article  PubMed  CAS  Google Scholar 

  • Cristóvão-Ferreira S, Vaz SH, Ribeiro JA et al (2009) Adenosine A2A receptors enhance GABA transport into nerve terminals by restraining PKC inhibition of GAT-1. J Neurochem 109:336–347

    Article  PubMed  CAS  Google Scholar 

  • Cui M, Bai X, Li T et al (2013) Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia. PLoss One 8:e57065

    Article  CAS  Google Scholar 

  • Dale N, Pearson T, Fringuelli BG (2000) Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol 526:143–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daval JL, von Lubitz DK, Deckert J et al (1989) Protective effect of cyclohexyladenosine on adenosine A1-receptors, guanine nucleotide and forskolin binding sites following transient brain ischemia: a quantitative autoradiographic study. Brain Res 491:212–226

    Article  PubMed  CAS  Google Scholar 

  • Daval JL, Nicolas F (1994) Opposite effects of cyclohexyladenosine and theophylline on hypoxic damage in cultured neurons. Neurosci Lett 175:114–116

    Article  PubMed  CAS  Google Scholar 

  • Day YJ, Marshall MA, Huang L et al (2004) Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 286:G285–G293

    Article  PubMed  CAS  Google Scholar 

  • Dennis SH, Jaafari N, Cimarosti H et al (2011) Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors. J Neurosci 31:11941–11952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Paola R, Melani A, Esposito E et al (2010) Adenosine A2A receptor-selective stimulation reduces signaling pathways involved in the development of intestine ischemia and reperfusion injury. Shock 33:541–551

    Article  PubMed  CAS  Google Scholar 

  • Dias RB, Ribeiro JA, Sebastião AM (2012) Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine a(2A) receptors. Hippocampus 22:276–291

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends in Neuroscience 22:391–397

    Article  CAS  Google Scholar 

  • Dirnagl U (2012) Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci 285:39–45

    Google Scholar 

  • Dixon AK, Gubitz AK, Sirinathsinghji DJ et al (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461–1468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domenici MR, de Carolis AS, Sagratella S (1996) Block by N6-L-phenylisopropyladenosine of the electrophysiological and morphological correlates of hippocampal ischaemic injury in the gerbil. Br J Pharmacol 118:1551–1557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan W, Gui L, Zhou Z et al (2009) Adenosine A2A receptor deficiency exacerbates white matter lesions and cognitive deficits induced by chronic cerebral hypoperfusion in mice. J Neurol Sci 285:39–45

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV (1984) Interactions between the effects of adenosine and calcium on synaptic responses in rat hippocampus in vitro. J Physiol 350:545–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dux E, Fastbom J, Ungerstedt U et al (1990) Protective effect of adenosine and a novel xanthine derivative propentofylline on the cell damage after bilateral carotid occlusion in the gerbil hippocampus. Brain Res 516:248–256

    Article  PubMed  CAS  Google Scholar 

  • Eckle T, Faigle M, Grenz A et al (2008) A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111:2024–2035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eltzschig HK, Thompson LF, Karhausen J et al (2004) Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104:3986–3992

    Article  PubMed  CAS  Google Scholar 

  • Eltzschig HK, Bonney SK, Eckle T (2013) Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends Mol Med 19:345–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eusemann TN, Willmroth F, Fiebich B et al (2015) Adenosine receptors differentially regulate the expression of regulators of G-protein Signalling (RGS) 2, 3 and 4 in astrocyte-like cells. PLoS One 11:e0134934

    Article  CAS  Google Scholar 

  • Evans MC, Swan JH, Meldrum BS (1987) An adenosine analogue, 2-chloroadenosine, protects against long term development of ischaemic cell loss in the rat hippocampus. Neurosci Lett 83:287–292

    Article  PubMed  CAS  Google Scholar 

  • Fedorova IM, Jacobson MA, Basile A et al (2003) Behavioral characterization of mice lacking the A3 adenosine receptor: sensitivity to hypoxic neurodegeneration. Cell Mol Neurobiol 23:431–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feoktistov I, Ryzhov S, Zhong H et al (2004) Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 44:649–654

    Article  PubMed  CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S, Liang BT et al (2012) Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 17:359–366

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA et al (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptor-an update. Pharmacol Rev 63:1–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frenguelli BG, Wigmore G, Llaudet E et al (2007) Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 101:1400–1413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fusco I, Coppi E, Dettori I et al (2017) The selective block of adenosine A2B receptors protects synaptic transmission from damage induced by oxygen and glucose deprivation in the CA1 rat hippocampus. Purinergic Signalling 13:1–53

    Google Scholar 

  • Gao Y, Phillis JW (1994) CGS15943, an adenosine A2 receptor antagonist, reduces cerebral ischemic inkury in the Mongolian gerbil. Life Sci 55:PL61–PL65

    Article  PubMed  CAS  Google Scholar 

  • Gaviano L, Fusco I, Coppi E et al (2017) The selective block of adenosine A2B receptors prevents neuronal death in CA1 hippocampus after oxygen glucose deprivation. Purinergic Signalling 13:1–53

    Google Scholar 

  • Genovese T, Melani A, Esposito E et al (2010) Selective adenosine a(2A) receptor agonists reduce the apoptosis in an experimental model of spinal cord trauma. J Biol Regul Homeost Agents 24:73–86

    PubMed  CAS  Google Scholar 

  • Gessi S, Varani K, Merighi S et al (2000) A(2A) adenosine receptors in human peripheral blood cells. Br J Pharmacol 129:2–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gessi S, Varani K, Merighi S et al (2005) Expression, pharmacological profile, and functional coupling of A2B receptors in a recombinant system and in peripheral blood cells using a novel selective antagonist radioligand, [3H]MRE 2029-F20. Mol Pharmacol 67:2137–2147

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Varani K et al (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Stefanelli A et al (2013) A1 and A3 adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes. Pharmacol Res 76:157–170

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves FQ, Pires J, Pliassova A et al (2015) Adenosine A2B receptors control A1 receptor-mediated inhibition of synaptic transmission in the mouse hippocampus. Eur J Neurosci 41:878–888

    Article  PubMed  Google Scholar 

  • Greene RW, Haas HL (1991) The electrophysiology of adenosine in the mammalian central nervous system. Prog Neurobiol 36:329–341

    Article  PubMed  CAS  Google Scholar 

  • Grenz A, Osswald H, Eckle T et al (2008) The Reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 5:e137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu L, Huang B, Shen W et al (2013) Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi. J Neuroinflammation 10:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gui L, Duan W, Tian H et al (2009) Adenosine A2A receptor deficiency reduces striatal glutamate outflow and attenuates brain injury induced by transient focal cerebral ischemia in mice. Brain Res 1297:185–193

    Article  PubMed  CAS  Google Scholar 

  • Hagberg H, Andersson P, Lacarewicz J et al (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49:227–231

    Article  PubMed  CAS  Google Scholar 

  • Haskó G, Linden J, Cronstein B et al (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hentschel S, Lewerenz A, Nieber K (2003) Activation of a(3) receptors by endogenous adenosine inhibits synaptic transmission during hypoxia in rat cortical neurons. Restor Neurol Neurosci 21:55–63

    PubMed  CAS  Google Scholar 

  • Heron A, Lekieffre D, Le Peillet E (1994) Effects of an A1 adenosine receptor agonist on the neurochemical, behavioral and histological consequences of ischemia. Brain Res 641:217–224

    Article  PubMed  CAS  Google Scholar 

  • Higashi H, Meno JR, Marwaha AS et al (2002) Hippocampal injury and neurobehavioral deficits following hyperglycemic cerebral ischemia: effect of theophylline and ZM241385. J Neurosurg 96:117–126

    Article  PubMed  CAS  Google Scholar 

  • Hinz S, Lacher SK, Seibt BF et al (2014) BAY60-6583 acts as a partial agonist at adenosine A2B receptors. J Pharmacol Exp Ther 349:427–436

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Dong H, Zhang H et al (2012) Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats. Brain Res 1459:81–90

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14:1363–1368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Impellizzeri D, Di Paola R, Esposito E et al (2011) CGS 21680, an agonist of the adenosine (A2A) receptor, decreases acute lung inflammation. Eur J Pharmacol 668:305–316

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Von Lubitz DK, Daly JW et al (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinka TR, Combs VM, Drew KL (2015) Translating drug-induced hibernation to therapeutic hypothermia. ACS Chem Neurosci 6:899–904

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV et al (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A 98:9407–9412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones PA, Smith RA, Stone TW (1998) Protection against kainate-induced excitotoxicity by adenosine A2A receptor agonists and antagonists. Neuroscience 85:229–237

    Article  PubMed  CAS  Google Scholar 

  • Jurewicz A, Matysiak M, Andrzejak S et al (2006) TRAIL-induced death of human adult oligodendrocytes is mediated by JNK pathway. Glia 53:158–166

    Article  PubMed  Google Scholar 

  • Kitagawa H, Mori A, Shimada J et al (2002) Intracerebral adenosine infusion improves neurological outcome after transient focal ischemia in rats. Neurol Res 24:317–323

    Article  PubMed  CAS  Google Scholar 

  • Koeppen M, Eckle T, Eltzschig HK (2011) Interplay of hypoxia and A2B adenosine receptors in tissue protection. Adv Pharmacol 61:145–186

    Article  PubMed  CAS  Google Scholar 

  • Kuan CY, Whitmarsh AJ, Yang DD et al (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100:15184–15189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurino M, Fukunaga K, Ushio Y et al (1995) Activation of mitogen-activated protein kinase in cultured rat hippocampal neurons by stimulation of glutamate receptors. J Neurochem 65:1282–1289

    Article  PubMed  CAS  Google Scholar 

  • Latini S, Bordoni F, Corradetti R et al (1998) Temporal correlation between adenosine outflow and synaptic potential inhibition in rat hippocampal slices during ischemia-like conditions. Brain Res 794:325–328

    Article  PubMed  CAS  Google Scholar 

  • Latini S, Bordoni F, Corradetti R et al (1999) Effect of A2A adenosine receptor stimulation and antagonism on synaptic depression induced by in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 128:1035–1044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Tetzlaff W, Kreutzberg GW (1986) Rapid down regulation of hippocampal adenosine receptors following brief anoxia. Brain Res 380:155–158

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Lowenkopf T (1993) Endogenous adenosine delays the onset of hypoxic depolarization in the rat hippocampus in vitro via an action at A1 receptors. Brain Res 609:313–315

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Oskouian RJ, Day YJ et al (2006) Mouse spinal cord compression injury is reduced by either activation of the adenosine A2A receptor on bone marrow-derived cells or deletion of the A2A receptor on non-bone marrow-derived cells. Neuroscience 141:2029–2039

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Han X, Lan X et al (2017) Inhibition of tPA-induced hemorrhagic transformation involves adenosine A2B receptor activation after cerebral ischemia. Neurobiol Dis 108:173–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang R, Pang ZP, Deng P et al (2009) Transient enhancement of inhibitory synaptic transmission in hippocampal CA1 pyramidal neurons after cerebral ischemia. Neuroscience 160:412–418

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Feng X, Jin R et al (2017) Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin Drug Deliv 28:1–12

    Google Scholar 

  • Lopes LV, Cunha RA, Kull B et al (2002) Adenosine a(2A) receptor facilitation of hippocampal synaptic transmission is dependent ontonic a(1) receptor inhibition. Neuroscience 112:319–329

    Article  PubMed  CAS  Google Scholar 

  • Lopes LV, Sebastião AM, Ribeiro JA (2011) Adenosine and related drugs in brain diseases: present and future in clinical trials. Curr Top Med Chem 11:1087–1101

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Liu XW, Yang YJ et al (2016) Evaluation on antithrombotic effect of aspirin eugenol ester from the view of platelet aggregation, hemorheology, TXB2/6-keto-PGF1α and blood biochemistry in rat model. BMC Vet Res 12:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macrez R, Ali C, Toutirais O et al (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10:471–480

    Article  PubMed  CAS  Google Scholar 

  • Maraula G, Traini C, Mello T et al (2013) Effects of oxygen and glucose deprivation on synaptic transmission in rat dentate gyrus: role of A2A adenosine receptors. Neuropharmacology 67:511–520

    Article  PubMed  CAS  Google Scholar 

  • Marcoli M, Raiteri L, Bonfanti A et al (2003) Sensitivity to selective adenosine A1 and A2A receptor antagonists of the release of glutamate induced by ischemia in rat cerebrocortical slices. Neuropharmacology 45:201–210

    Article  PubMed  CAS  Google Scholar 

  • Martire A, Pepponi R, Tebano MT et al (2016) Neuroprotective potential of adenosine A1 receptor partial agonists in ex vivo and in vitro experimental models of ischemia. Communication to the annual meeting of the Italian Purine Club. Rome, January 15

    Google Scholar 

  • Matsumoto K, Graf R, Rosner G et al (1992) Flow thresholds for extracellular purine catabolite elevation in cat focal ischemia. Brain Res 579:309–314

    Article  PubMed  CAS  Google Scholar 

  • Mayne M, Fotheringham J, Yan HJ et al (2001) Adenosine A2A receptor activation reduces proinflammatory events and decreases cell death following intracerebral hemorrhage. Ann Neurol 49:727–735

    Article  PubMed  CAS  Google Scholar 

  • Mazzon E, Esposito E, Impellizzeri D et al (2011) CGS 21680, an agonist of the adenosine (A2A) receptor, reduces progression of murine type II collagen-induced arthritis. J Rheumatol 38:2119–2129

    Article  CAS  PubMed  Google Scholar 

  • Melani A, Pantoni L, Corsi C et al (1999) Striatal outflow of adenosine, excitatory amino acids, gamma-aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion: correlations with neurological deficit and histopathological damage. Stroke 30:2448–2455

    Article  PubMed  CAS  Google Scholar 

  • Melani A, Pantoni L, Bordoni F et al (2003) The selective A2A receptor antagonist SCH58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 959:243–250

    Article  PubMed  CAS  Google Scholar 

  • Melani A, Gianfriddo M, Vannucchi MG et al (2006) The selective A2A receptor antagonist SCH58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Res 1073-1074:470–480

    Article  PubMed  CAS  Google Scholar 

  • Melani A, Cipriani S, Vannucchi MG et al (2009) Selective adenosine A2A receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. Brain 132:1480–1495

    Article  PubMed  Google Scholar 

  • Melani A, Corti F, Stephan H et al (2012) Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum. Exp Neurol 233:193–204

    Article  PubMed  CAS  Google Scholar 

  • Melani A, Corti F, Cellai L et al (2014) Low doses of the selective adenosine A2A receptor agonist CGS21680 are protective in a rat model of transient cerebral ischemia. Brain Res 1551:59–72

    Article  PubMed  CAS  Google Scholar 

  • Melani A, Dettori I, Corti F et al (2015) Time-course of protection by the selective A2A receptor antagonist SCH58261 after transient focal cerebral ischemia. Neurol Sci 36:1441–1448

    Article  PubMed  Google Scholar 

  • Milton SL, Nayak G, Kesaraju S et al (2007) Suppression of reactive oxygen species production enhances neuronal survival in vitro and in vivo in the anoxia-tolerant turtle Trachemys scripta. J Neurochem 101:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Mishiro K, Ishiguro M, Suzuki Y et al (2012) A broad-spectrum matrix metalloproteinase inhibitor prevents hemorrhagic complications induced by tissue plasminogen activator in mice. Neuroscience 205:39–48

    Article  PubMed  CAS  Google Scholar 

  • Mizuma A, Yenari MA (2017) Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Front Neurol 8:467

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed RA, Agha AM, Abdel-Rahman AA et al (2016) Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience 314:145–159

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Nishizaki T, Okada Y (1992) Protective effect of adenosine on the anoxic damage of hippocampal slice. Neuroscience 46:301–307

    Article  PubMed  CAS  Google Scholar 

  • Moriyama K, Sitkovsky MV (2010) Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J Biol Chem 285:39271–39288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muzzi M, Blasi F, al MA (2013) Neurological basis of AMP-dependent thermoregulation and its relevance to central and peripheral hyperthermia. J Cereb Blood Flow Metab 33:183–190

    Article  PubMed  CAS  Google Scholar 

  • Nieber K, Hentschel S (2006) Signalling pathways of adenosine A3 receptors in rat cortical neurons. In: Proceedings of the 8th international symposium on adenosine and adenine nucleotides. Ferrara, May 24–28

    Google Scholar 

  • O'Regan MH, Simpson RE, Perkins LM et al (1992) The selective A2 adenosine receptor agonist CGS 21680 enhances excitatory transmitter amino acid release from the ischemic rat cerebral cortex. Neurosci Lett 138:169–172

    Article  PubMed  CAS  Google Scholar 

  • Odashima M, Bamias G, Rivera-Nieves J et al (2005) Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129:26–33

    Article  PubMed  CAS  Google Scholar 

  • Olsson T, Cronberg T, Rytter A et al (2004) Deletion of the adenosine A1 receptor gene does not alter neuronal damage following ischaemia in vivo or in vitro. Eur J Neurosci 20:1197–1204

    Article  PubMed  Google Scholar 

  • Paterniti I, Melani A, Cipriani S et al (2011) Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects. J Neuroinflammation 8:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedata F, Latini S, Pugliese AM et al (1993) Investigations into the adenosine outflow from hippocampal slices evoked by ischemia-like conditions. J Neurochem 61:284–289

    Article  PubMed  CAS  Google Scholar 

  • Pedata F, Gianfriddo M, Turchi D et al (2005) The protective effect of adenosine A2A receptor antagonism in cerebral ischemia. Neurol Res 27:169–174

    Article  PubMed  CAS  Google Scholar 

  • Pedata F, Pugliese AM, Coppi E et al (2007) Adenosine in the central nervous system: effects on neurotransmission and Neuroprotection. Immunol Endocr Metab Agents Med Chem 4:304–321

    Article  Google Scholar 

  • Pedata F, Pugliese AM, Sebastião AM et al (2010) Adenosine A3 receptor signaling in the central nervous system. In: Borea PA (ed) A3 adenosine receptors from cell biology to pharmacology and therapeutics. Springer, Netherlands, pp 165–188

    Google Scholar 

  • Pedata F, Pugliese AM, Coppi E et al (2014) Adenosine A2A receptors modulate acute injury and neuroinflammation in brain ischemia. Mediat Inflamm 2014:805198

    Article  CAS  Google Scholar 

  • Perez-Buira S, Barrachina M, Rodriguez A et al (2007) Expression levels of adenosine receptors in hippocampus and frontal cortex in argyrophilic grain disease. Neurosci Lett 423:194–199

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW (1995) The effect of selective A1 and A2A adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res 705:79–84

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Goshgarian HG (2001) Adenosine and neurotrauma: therapeutic perspectives. Neurol Res 23:183–189

    Article  PubMed  CAS  Google Scholar 

  • Pimentel VC, Moretto MB, Oliveira MC et al (2015) Neuroinflammation after neonatal hypoxia-ischemia is associated with alterations in the purinergic system: adenosine deaminase 1 isoenzyme is the most predominant after insult. Mol Cell Biochem 403:169–177

    Article  PubMed  CAS  Google Scholar 

  • Pinto-Duarte A, Coelho JE, Cunha RA et al (2005) Adenosine A2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus. J Neurochem 93:595–604

    Article  PubMed  CAS  Google Scholar 

  • Poli D, Falsini M, Varano F et al (2017) Imidazo[1,2-a]pyrazin-8-amine core for the design of new adenosine receptor antagonists: structural exploration to target the A3 and A2A subtypes. Eur J Med Chem 125:611–628

    Article  PubMed  CAS  Google Scholar 

  • Popoli P, Pintor A, Domenici MR et al (2002) Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 22:1967–1975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popoli P, Pepponi R (2012) Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system. CNS Neurol Disord Drug Targets 11:664–674

    Article  PubMed  CAS  Google Scholar 

  • Pugliese AM, Latini S, Corradetti R et al (2003) Brief, repeated, oxygen-glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus. Role of adenosine receptors. Br J Pharmacol 140:305–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pugliese AM, Coppi E, Spalluto G et al (2006) A3 adenosine receptor antagonists delay irreversible synaptic failure caused by oxygen and glucose deprivation in the rat CA1 hippocampus in vitro. Br J Pharmacol 147:524–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pugliese AM, Coppi E, Volpini R et al (2007) Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during oxygen-glucose deprivation episodes of different duration. Biochem Pharmacol 74:768–779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pugliese AM, Traini C, Cipriani S et al (2009) The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen-glucose deprivation in rat CA1 hippocampal slices. Br J Pharmacol 157:818–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravani A, Vincenzi F, Bortoluzzi A et al (2017) Role and function of A2A and A3 adenosine receptors in patients with ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. Int J Mol Sci 18(4):pii:E697

    Google Scholar 

  • Rebola N, Lujan R, Cunha RA et al (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134

    Article  PubMed  CAS  Google Scholar 

  • Rivkees SA, Zhao Z, Porter G et al (2001) Influences of adenosine on the fetus and newborn. Mol Genet Metab 74:160–171

    Article  PubMed  CAS  Google Scholar 

  • Rudolphi KA, Keil M, Fastbom J et al (1989) Ischaemic damage in gerbil hippocampus is reduced following upregulation of adenosine A1 receptors by caffeine treatment. Neurosci Lett 103:275–280

    Article  PubMed  CAS  Google Scholar 

  • Schmidt B, Roberts RS, Davis P et al (2007) Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 357:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Sciotti VM, Roche FM, Grabb MC et al (1992) Adenosine receptor blockade augments interstitial fluid levels of excitatory amino acids during cerebral ischemia. J Cereb Blood Flow Metab 12:646–655

    Article  PubMed  CAS  Google Scholar 

  • Sebastião AM, de Mendonca A, Moreira T et al (2001) Activation of synaptic NMDA receptors by action potential-dependent release of transmitter during hypoxia impairs recovery of synaptic transmission on reoxygenation. J Neurosci 21:8564–8571

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebastião AM, Ribeiro JA (2009) Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection. Br J Pharmacol 158:15–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheardown MJ, Knutsen LJS (1996) Unexpected neuroprotection observed with the adenosine A2A receptor agonist CGS21680. Drug Dev Res 39:108–114

    Article  CAS  Google Scholar 

  • Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096

    Article  PubMed  CAS  Google Scholar 

  • Sousa JB, Diniz C (2017) The adenosinergic system as a therapeutic target in the vasculature: new ligands and challenges. Molecules 22:pii: E752

    Article  CAS  Google Scholar 

  • Stockwell J, Chen Z, Niazi M et al (2016) Protein phosphatase role in adenosine A1 receptor-induced AMPA receptor trafficking and rat hippocampal neuronal damage in hypoxia/reperfusion injury. Neuropharmacology 102:254–265

    Article  PubMed  CAS  Google Scholar 

  • Stockwell J, Jakova E, Cayabyab FS (2017) Adenosine A1 and A2A receptors in the brain: current research and their role in neurodegeneration. Molecules 22:676

    Article  CAS  PubMed Central  Google Scholar 

  • Sufianova GZ, Sufianov AA, Shapkin AG (2014) Effect of cyclopentyladenosine on lipid peroxidation during focal cerebral ischemia. Bull Exp Biol Med 157:228–230

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Nomikos GG, Ongini E et al (1997) Antagonism of adenosine A2A receptors underlies the behavioural activating effect of caffeine and is associated with reduced expression of messenger RNA for NGFI-a and NGFI-B in caudate-putamen and nucleus accumbens. Neuroscience 79:753–764

    Article  PubMed  CAS  Google Scholar 

  • Trincavelli ML, Marroni M, Tuscano D et al (2004) Regulation of A2B adenosine receptor functioning by tumour necrosis factor a in human astroglial cells. J Neurochem 91:1180–1190

    Article  PubMed  CAS  Google Scholar 

  • Trincavelli ML, Melani A, Guidi S et al (2008) Regulation of a(2A) adenosine receptor expression and functioning following permanent focal ischemia in rat brain. J Neurochem 104:479–490

    PubMed  CAS  Google Scholar 

  • Tupone D, Madden CJ, Morrison SF (2013) Highlights in basic autonomic neurosciences: central adenosine A1 receptor - the key to a hypometabolic state and therapeutic hypothermia? Auton Neurosci 176:1–2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tupone D, Cetas JS, Morrison SF (2016) Hibernation, hypothermia and a possible therapeutic "shifted homeostasis" induced by central activation of A1 adenosine receptor (A1AR). Nihon Shinkei Seishin Yakurigaku Zasshi 36:51–54

    PubMed  PubMed Central  Google Scholar 

  • Turner CP, Seli M, Ment L et al (2003) A1 adenosine receptors mediate hypoxia-induced ventriculomegaly. Proc Natl Acad Sci U S A 100:11718–11722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuttolomondo A, Di Sciacca R, Di Raimondo D et al (2009) Inflammation as a therapeutic target in acute ischemic stroke treatment. Curr Top Med Chem 9:1240–1260

    Article  PubMed  CAS  Google Scholar 

  • Varani K, Padovan M, Vincenzi F et al (2011) A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther 13:R197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volpini R, Costanzi S, Lambertucci C et al (2002) N (6)-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A3 receptor and a starting point for searching A2B ligands. J Med Chem 45:3271–3279

    Article  PubMed  CAS  Google Scholar 

  • Volpini R, Dal Ben D, Lambertucci C et al (2007) N6-methoxy-2-alkynyladenosine derivatives as highly potent and selective ligands at the human A3 adenosine receptor. J Med Chem 50:1222–1230

    Article  PubMed  CAS  Google Scholar 

  • von Lubitz DK, Dambrosia JM, Kemposki O et al (1988) Cyclohexyl adenosine protects against neuronal death following ischemia in the CA1 region of gerbil hippocampus. Stroke 19:1133–1139

    Article  Google Scholar 

  • von Lubitz DK, Marangos PJ (1990) Cerebral ischemia in gerbils: Postischemic administration of cyclohexyl adenosine and 8-sulfophenyl-theophylline. J Mol Neurosci 2:53–59

    Article  Google Scholar 

  • von Lubitz DK, Lin RC, Melman N et al (1994a) Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia. Eur J Pharmacol 256:161–167

    Article  Google Scholar 

  • von Lubitz DK, Lin RC, Popik P et al (1994b) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263:59–67

    Article  Google Scholar 

  • von Lubitz DK, Lin RC, Jacobson KA (1995) Cerebral ischemia in gerbils: effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. Eur J Pharmacol 287:295–302

    Article  Google Scholar 

  • von Lubitz DK, Lin RC, Paul JA et al (1996) Postischemic administration of adenosine amine congener (ADAC): analysis of recovery in gerbils. Eur J Pharmacol 316:171–179

    Article  Google Scholar 

  • Wang G, Dinkins M, He Q et al (2012) Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287:21384–21395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei W, Du C, Lv J et al (2013) Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol 190:138–146

    Article  PubMed  CAS  Google Scholar 

  • Winerdal M, Winerdal ME, Wang YQ et al (2016) Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury. Purinergic Signal 12:89–101

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Guo S, Jia Z et al (2013) Additive effect of prostaglandin E2 and adenosine in mouse experimental autoimmune encephalomyelitis. Prostaglandins Other Lipid Mediat 100-101:30–35

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Zhang Y, Nguyen HG et al (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 116:1913–1923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang D, Chen H, Koupenova M et al (2010) A new role for the A2b adenosine receptor in regulating platelet function. J Thromb Haemost 8:817–827

    Article  PubMed  CAS  Google Scholar 

  • Yang ZJ, Wang B, Kwansa H et al (2013) Adenosine A2A receptor contributes to ischemic brain damage in newborn piglet. J Cereb Blood Flow Metab 33:1612–1620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Chen X, Wang S et al (2015) N2 extenuates experimental ischemic stroke through platelet aggregation inhibition. Thromb Res 136:1310–1317

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Guo M, Wang X et al (2017) Ischemic preconditioning with a ketogenic diet improves brain ischemic tolerance through increased extracellular adenosine levels and hypoxia-inducible factors. Brain Res 1667:11–18

    Article  PubMed  CAS  Google Scholar 

  • Yun J, Li J, Zuo Z (2014) Transferred inter-cell ischemic preconditioning-induced neuroprotection may be mediated by adenosine A1 receptors. Brain Res Bull 103:66–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zamani M, Soleimani M, Golab F et al (2013) NeuroProtective effects of adenosine receptor agonist coadministration with ascorbic acid on CA1 hippocampus in a mouse model of ischemia reperfusion injury. Metab Brain Dis 28:367–374

    Article  PubMed  CAS  Google Scholar 

  • Zhang RL, Chopp M, Chen H et al (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125:3–10

    Article  PubMed  CAS  Google Scholar 

  • Zhou JG, Meno JR, Hsu SS et al (1994) Effects of theophylline and cyclohexyladenosine on brain injury following normo- and hyperglycemic ischemia: a histopathologic study in the rat. J Cereb Blood Flow Metab 14:166–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Health Grant NS041083-10 and NS073947 (USA) and from University of Florence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicita Pedata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pedata, F., Dettori, I., Gaviano, L., Coppi, E., Pugliese, A.M. (2018). Adenosine and Oxygen/Glucose Deprivation in the Brain. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_14

Download citation

Publish with us

Policies and ethics