Skip to main content

Domain Generality and Specificity of Statistical Learning and its Relation with Reading Ability

  • Chapter
Reading and Dyslexia

Part of the book series: Literacy Studies ((LITS,volume 16))

Abstract

Reading is to map orthographic units onto an existing phonologic-semantic system of its corresponding spoken language. Neuroimaging studies have shown that the print-speech co-activation in perisylvian networks for print-speech conversion is a universal neural signature of skilled readers. In addition to large commonality, small language differences are suggested: phonological knowledge from spoken language is useful for orthographic learning in transparent writing systems whereas visuospatial processing is more demanded for opaque writing systems, like Chinese. An emerging research suggests that reading acquisition may also reflect a general statistical learning (SL) capacity to implicitly assimilate the systematic structures of a linguistic environment. It is unclear whether visual and auditory SL play similar roles in learning to read different writing systems and whether the experience of learning of any given orthographic system changes the way one detects and computes statistical patterns. To understand the bidirectional relations between SL and reading experience, future research could examine the relative contribution of visual and auditory SL to individual differences in learning different writing systems, e.g., English vs. Chinese and track the changes of SL after learning different writing systems. Such studies will also shed light on the debate in universal account of learning difficulty in dyslexia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The paradigms of statistical learning and implicit learning are similar in probing human learning sequence or structure from inputs without explicit instruction (Perruchet & Pacton 2006). Hence, we cited the results from both paradigms as index of statistical learning.

References

  • Apel, K., Wolter, J. A., & Masterson, J. J. (2006). Effects of phonotactic and orthotactic probabilities during fast mapping on 5-year-olds’ learning to spell. Developmental Neuropsychology, 29(1), 21–42. https://doi.org/10.1207/s15326942dn2901_3

    Google Scholar 

  • Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and adults. Cognitive Science, 36(2), 286–304. https://doi.org/10.1111/j.1551-6709.2011.01200.x

    Google Scholar 

  • Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan, L. (2006). Tuning of the human left fusiform gyrus to sublexical orthographic structure. NeuroImage, 33(2), 739–748. https://doi.org/10.1016/j.neuroimage.2006.06.053

    Google Scholar 

  • Blomert, L. (2011). The neural signature of orthographic-phonological binding in successful and failing reading development. NeuroImage, 57(3), 695–703. https://doi.org/10.1016/j.neuroimage.2010.11.003

    Google Scholar 

  • Boets, B., Wouters, J., van Wieringen, A., Smedt, B. de, & Ghesquière, P. (2008). Modelling relations between sensory processing, speech perception, orthographic and phonological ability, and literacy achievement. Brain and Language, 106(1), 29–40. https://doi.org/10.1016/j.bandl.2007.12.004

    Google Scholar 

  • Bogaerts, L., Szmalec, A., Maeyer, M. de, Page, M. P. A., & Duyck, W. (2016). The involvement of long-term serial-order memory in reading development: A longitudinal study. Journal of Experimental Child Psychology, 145, 139–156. https://doi.org/10.1016/j.jecp.2015.12.008

    Google Scholar 

  • Bosseler, A. N., Teinonen, T., Tervaniemi, M., & Huotilainen, M. (2016). Infant directed speech enhances statistical learning in newborn infants: An ERP study. PloS One, 11(9), e0162177. https://doi.org/10.1371/journal.pone.0162177

    Google Scholar 

  • Brem, S., Bach, S., Kucian, K., Guttorm, T. K., Martin, E., Lyytinen, H., … Richardson, U. (2010). Brain sensitivity to print emerges when children learn letter-speech sound correspondences. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7939–7944. https://doi.org/10.1073/pnas.0904402107

    Google Scholar 

  • Bulf, H., Johnson, S. P., & Valenza, E. (2011). Visual statistical learning in the newborn infant. Cognition, 121(1), 127–132. https://doi.org/10.1016/j.cognition.2011.06.010

    Google Scholar 

  • Caravolas, M., Lervag, A., Defior, S., Seidlova Malkova, G., & Hulme, C. (2013). Different patterns, but equivalent predictors, of growth in reading in consistent and inconsistent orthographies. Psychological Science, 24(8), 1398–1407. https://doi.org/10.1177/0956797612473122

    Google Scholar 

  • Carlisle, J. F., & Feldman, L. B. (1995). Morphological awareness and early reading achievement. In L. B. Feldmann (Ed.), Morphological aspects of language processing (pp. 189–209). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Carr, K. W., White-Schwoch, T., Tierney, A. T., Strait, D. L., & Kraus, N. (2014). Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. Proceedings of the National Academy of Sciences of the United States of America, 111(40), 14559–14564. https://doi.org/10.1073/pnas.1406219111

    Google Scholar 

  • Cattinelli, I., Borghese, N. A., Gallucci, M., & Paulesu, E. (2013). Reading the reading brain: A new meta-analysis of functional imaging data on reading. Journal of Neurolinguistics, 26(1), 214–238. https://doi.org/10.1016/j.jneuroling.2012.08.001

    Google Scholar 

  • Chan, S.-t., Tang, S.-w., Tang, K.-w., Lee, W.-k., Lo, S.-s., & Kwong, K. K. (2009). Hierarchical coding of characters in the ventral and dorsal visual streams of Chinese language processing. NeuroImage, 48(2), 423–435. https://doi.org/10.1016/j.neuroimage.2009.06.078

    Google Scholar 

  • Chang, L.-Y., Chen, Y.-C., & Perfetti, C. A. (2017). GraphCom: A multidimensional measure of graphic complexity applied to 131 written languages. Behavior Research Methods. https://doi.org/10.3758/s13428-017-0881-y

    Google Scholar 

  • Chang, L.-Y., Plaut, D. C., & Perfetti, C. A. (2016). Visual complexity in orthographic learning: Modeling learning across writing system variations. Scientific Studies of Reading, 20(1), 64–85. https://doi.org/10.1080/10888438.2015.1104688

    Google Scholar 

  • Chen, M. J., & Weekes, B. S. (2004). Effects of semantic radicals on Chinese character categorization and character decision. Chinese Journal of Psychology, 46, 179–195. https://doi.org/10.6129/CJP

    Google Scholar 

  • Christiansen, M. H., Conway, C. M., & Onnis, L. (2012). Similar neural correlates for language and sequential learning: Evidence from event-related brain potentials. Language and Cognitive Processes, 27(2), 231–256. https://doi.org/10.1080/01690965.2011.606666

    Google Scholar 

  • Coltheart, M. (1978). Lexical access in simple reading tasks. In G. Underwood (Ed.), Strategies of information processing (pp. 151–216). London: Academic Press.

    Google Scholar 

  • Coltheart, M. (1983). Child development: Phonological awareness: A preschool precursor of success in reading. Nature, 301(5899), 370. https://doi.org/10.1038/301370a0

    Google Scholar 

  • Conway, C. M., & Christiansen, M. H. (2009). Seeing and hearing in space and time: Effects of modality and presentation rate on implicit statistical learning. European Journal of Cognitive Psychology, 21(4), 561–580. https://doi.org/10.1080/09541440802097951

    Google Scholar 

  • Cunningham, A. E., & Stanovich, K. E. (1993). Children’s literacy environments and early word recognition subskills. Reading and Writing, 5(2), 193–204. https://doi.org/10.1007/BF01027484

    Google Scholar 

  • Davis, M. H., & Gaskell, M. G. (2009). A complementary systems account of word learning: Neural and behavioural evidence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1536), 3773–3800. https://doi.org/10.1098/rstb.2009.0111

    Google Scholar 

  • Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398. https://doi.org/10.1016/j.neuron.2007.10.004

    Google Scholar 

  • Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9(7), 335–341. https://doi.org/10.1016/j.tics.2005.05.004

    Google Scholar 

  • Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., … Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364. https://doi.org/10.1126/science.1194140

    Google Scholar 

  • Doyon, J. (2008). Motor sequence learning and movement disorders. Current Opinion in Neurology, 21(4), 478–483. https://doi.org/10.1097/WCO.0b013e328304b6a3

    Google Scholar 

  • Ellis, N. C., & Schmidt, R. (1998). Rules or associations in the acquisition of morphology? The frequency by regularity interaction in human and PDP learning of morphosyntax. Language and Cognitive Processes, 13(2-3), 307–336. https://doi.org/10.1080/016909698386546

    Google Scholar 

  • Feldman, L. B., & Siok, W. W. T. (1997). The role of component function in visual recognition of Chinese characters. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(3), 776–781. https://doi.org/10.1037/0278-7393.23.3.776

    Google Scholar 

  • Fiebach, C. J., Ricker, B., Friederici, A. D., & Jacobs, A. M. (2007). Inhibition and facilitation in visual word recognition: Prefrontal contribution to the orthographic neighborhood size effect. NeuroImage, 36(3), 901–911. https://doi.org/10.1016/j.neuroimage.2007.04.004

    Google Scholar 

  • Fiez, J. A., Balota, D. A., Raichle, M. E., & Petersen, S. E. (1999). Effects of lexicality, frequency, and spelling-to-sound consistency on the functional anatomy of reading. Neuron, 24(1), 205–218. https://doi.org/10.1016/S0896-6273(00)80833-8

    Google Scholar 

  • Fiser, J., & Aslin, R. N. (2002). Statistical learning of new visual feature combinations by infants. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15822–15826. https://doi.org/10.1073/pnas.232472899

    Google Scholar 

  • Fiser, J., & Aslin, R. N. (2005). Encoding multielement scenes: Statistical learning of visual feature hierarchies. Journal of Experimental Psychology, 134(4), 521–537. https://doi.org/10.1037/0096-3445.134.4.521

    Google Scholar 

  • Foorman, B. R., Francis, D. J., Fletcher, J. M., Schatschneider, C., & Mehta, P. (1998). The role of instruction in learning to read: Preventing reading failure in at-risk children. Journal of Educational Psychology, 90(1), 37–55. https://doi.org/10.1037/0022-0663.90.1.37

    Google Scholar 

  • Frost, R. (2012). A universal approach to modeling visual word recognition and reading: Not only possible, but also inevitable. Behavioral and Brain Sciences, 35(5), 310–329.

    Google Scholar 

  • Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117–125. https://doi.org/10.1016/j.tics.2014.12.010

    Google Scholar 

  • Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013). What predicts successful literacy acquisition in a second language? Psychological Science, 24(7), 1243–1252. https://doi.org/10.1177/0956797612472207

    Google Scholar 

  • Frost, S. J., Landi, N., Mencl, W. E., Sandak, R., Fulbright, R. K., Tejada, E. T., … Pugh, K. R. (2009). Phonological awareness predicts activation patterns for print and speech. Annals of Dyslexia, 59(1), 78–97. https://doi.org/10.1007/s11881-009-0024-y

    Google Scholar 

  • Frost, S. J., Mencl, W. E., Sandak, R., Moore, D. L., Rueckl, J. G., Katz, L., … Pugh, K. R. (2005). A functional magnetic resonance imaging study of the tradeoff between semantics and phonology in reading aloud. Neuroreport, 16(6), 621–624.

    Google Scholar 

  • Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934–945. https://doi.org/10.1044/2015_JSLHR-L-14-0324

    Google Scholar 

  • Glushko, R. J. (1979). The organization and activation of orthographic knowledge in reading aloud. Journal of Experimental Psychology: Human Perception and Performance, 5(4), 674–691. https://doi.org/10.1037/0096-1523.5.4.674

    Google Scholar 

  • Goswami, U., Wang, H.-L. S., Cruz, A., Fosker, T., Mead, N., & Huss, M. (2011). Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese. Journal of Cognitive Neuroscience, 23(2), 325–337. https://doi.org/10.1162/jocn.2010.21453

    Google Scholar 

  • Gottardo, A., Chiappe, P., Siegel, L. S., & Stanovich, K. E. (1999). Patterns of word and nonword processing in skilled and less-skilled readers. Reading and Writing, 11(5/6), 465–487. https://doi.org/10.1023/A:1008034802088

    Google Scholar 

  • Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103(3), 518–565. https://doi.org/10.1037/0033-295X.103.3.518

    Google Scholar 

  • Graves, W. W., Desai, R., Humphries, C., Seidenberg, M. S., & Binder, J. R. (2010). Neural systems for reading aloud: A multiparametric approach. Cerebral Cortex, 20(8), 1799–1815. https://doi.org/10.1093/cercor/bhp245

    Google Scholar 

  • Herbster, A. N., Mintun, M. A., Nebes, R. D., & Becker, J. T. (1997). Regional cerebral blood flow during word and nonword reading. Human Brain Mapping, 5(2), 84–92. https://doi.org/10.1002/(SICI)1097-0193(1997)5:2\textless84::AID-HBM2\textgreater3.0.CO;2-I

    Google Scholar 

  • Hoeft, F., Meyler, A., Hernandez, A., Juel, C., Taylor-Hill, H., Martindale, J. L., … Gabrieli, J. D. E.. Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4234–4239. https://doi.org/10.1073/pnas.0609399104

    Google Scholar 

  • Howard, J. H., JR, Howard, D. V., Japikse, K. C., & Eden, G. F. (2006). Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia, 44(7), 1131–1144. https://doi.org/10.1016/j.neuropsychologia.2005.10.015

    Google Scholar 

  • Hsu, C.-H., Lee, C.-Y., & Marantz, A. (2011). Effects of visual complexity and sublexical information in the occipitotemporal cortex in the reading of Chinese phonograms: A single-trial analysis with meg. Brain and Language, 117(1), 1–11. https://doi.org/10.1016/j.bandl.2010.10.002

    Google Scholar 

  • Hu, W., Lee, H. L., Zhang, Q., Liu, T., Geng, L. B., Seghier, M. L., … Price, C. J. (2010). Developmental dyslexia in Chinese and English populations: Dissociating the effect of dyslexia from language differences. Brain, 133(Pt 6), 1694–1706. https://doi.org/10.1093/brain/awq106

    Google Scholar 

  • Huang, C.-R., & Chen, K.-J. (1998). Academia Sinica balanced corpus (3 ed.). Taipei, Taiwan: Academia Sinica.

    Google Scholar 

  • Hung, Y.-H., Hung, D. L., Tzeng, O. J.-L., & Wu, D. H. (2014). Tracking the temporal dynamics of the processing of phonetic and semantic radicals in Chinese character recognition by meg. Journal of Neurolinguistics, 29, 42–65. https://doi.org/10.1016/j.jneuroling.2013.12.003

    Google Scholar 

  • Hung, Y. H., Frost, S. J., Molfese, P., Malins, J. G., Landi, N., Mencl, W. E., ... & Pugh, K. R. (2018). Common neural basis of motor sequence learning and word recognition and its relation with individual differences in reading skill. Scientific Studies of Reading, 1–12.

    Google Scholar 

  • Hunt, R. H., & Aslin, R. N. (2001). Statistical learning in a serial reaction time task: Access to separable statistical cues by individual learners. Journal of Experimental Psychology: General, 130(4), 658–680. https://doi.org/10.1037/0096-3445.130.4.658

    Google Scholar 

  • Janacsek, K., Fiser, J., & Nemeth, D. (2012). The best time to acquire new skills: Age-related differences in implicit sequence learning across the human lifespan. Developmental Science, 15(4), 496–505. https://doi.org/10.1111/j.1467-7687.2012.01150.x

    Google Scholar 

  • Joanisse, M. F., & Seidenberg, M. S. (2005). Imaging the past: Neural activation in frontal and temporal regions during regular and irregular past-tense processing. Cognitive, Affective, & Behavioral Neuroscience, 5(3), 282–296. https://doi.org/10.3758/CABN.5.3.282

    Google Scholar 

  • Joubert, S., Beauregard, M., Walter, N., Bourgouin, P., Beaudoin, G., Leroux, J.-M., … Lecours, A. R. (2004). Neural correlates of lexical and sublexical processes in reading. Brain and Language, 89(1), 9–20. https://doi.org/10.1016/S0093-934X(03)00403-6

    Google Scholar 

  • Karuza, E. A., Newport, E. L., Aslin, R. N., Starling, S. J., Tivarus, M. E., & Bavelier, D. (2013). The neural correlates of statistical learning in a word segmentation task: An fMRI study. Brain and Language, 127(1), 46–54. https://doi.org/10.1016/j.bandl.2012.11.007

    Google Scholar 

  • Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83(2), B35–42.

    Google Scholar 

  • Kubovy, M., & Schutz, M. (2010). Audio-visual objects. Review of Philosophy and Psychology, 1(1), 41–61. https://doi.org/10.1007/s13164-009-0004-5

    Google Scholar 

  • Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews. Neuroscience, 5(11), 831–843. https://doi.org/10.1038/nrn1533

    Google Scholar 

  • Lee, C.-Y., Tsai, J.-L., Chan, W.-H., Hsu, C.-H., Hung, D. L., & Tzeng, O. J. L. (2007). Temporal dynamics of the consistency effect in reading Chinese: An event-related potentials study. Neuroreport, 18(2), 147–151. https://doi.org/10.1097/WNR.0b013e328010d4e4

    Google Scholar 

  • Lee, C.-Y., Tsai, J.-L., Kuo, W.-J., Yeh, T.-C., Wu, Y.-T., Ho, L.-T., … Hsieh, J.-C. (2004). Neuronal correlates of consistency and frequency effects on Chinese character naming: An event-related fMRI study. NeuroImage, 23(4), 1235–1245. https://doi.org/10.1016/j.neuroimage.2004.07.064

    Google Scholar 

  • Lee, C.-Y., Tsai, J. L., Su, E. C. I., Tzeng, O. J. L., & Hung, D. L. (2005). Consistency, regularity, and frequency effects in naming Chinese characters. Language and Linguistics, 6(1), 75–107.

    Google Scholar 

  • Lee, S.-H., Booth, J. R., & Chou, T.-L. (2015). Developmental changes in the neural influence of sublexical information on semantic processing. Neuropsychologia, 73, 25–34. https://doi.org/10.1016/j.neuropsychologia.2015.05.001

    Google Scholar 

  • Leppänen, P. H. T., Richardson, U., Pihko, E., Eklund, K. M., Guttorm, T. K., Aro, M., & Lyytinen, H. (2002). Brain responses to changes in speech sound durations differ between infants with and without familial risk for dyslexia. Developmental Neuropsychology, 22(1), 407–422. https://doi.org/10.1207/S15326942dn2201_4

    Google Scholar 

  • Liberman, I. Y., Shankweiler, D., Fischer, F., & Carter, B. (1974). Explicit syllable and phoneme segmentation in the young child. Journal of Experimental Child Psychology, 18(2), 201–212. https://doi.org/10.1016/0022-0965(74)90101-5

    Google Scholar 

  • Lum, J. A. G., Ullman, M. T., & Conti-Ramsden, G. (2013). Procedural learning is impaired in dyslexia: Evidence from a meta-analysis of serial reaction time studies. Research in Developmental Disabilities, 34(10), 3460–3476. https://doi.org/10.1016/j.ridd.2013.07.017

    Google Scholar 

  • Martin, A., Schurz, M., Kronbichler, M., & Richlan, F. (2015). Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies. Human Brain Mapping, 36(5), 1963–1981. https://doi.org/10.1002/hbm.22749

    Google Scholar 

  • Massaro, D. W., & Cohen, M. M. (1994). Visual, orthographic, phonological, and lexical influences in reading. Journal of Experimental Psychology: Human Perception and Performance, 20(6), 1107–1128. https://doi.org/10.1037/0096-1523.20.6.1107

    Google Scholar 

  • McBride-Chang, C., Zhou, Y., Cho, J.-R., Aram, D., Levin, I., & Tolchinsky, L. (2011). Visual spatial skill: A consequence of learning to read? Journal of Experimental Child Psychology, 109(2), 256–262. https://doi.org/10.1016/j.jecp.2010.12.003

    Google Scholar 

  • McNorgan, C., Randazzo-Wagner, M., & Booth, J. R. (2013). Cross-modal integration in the brain is related to phonological awareness only in typical readers, not in those with reading difficulty. Frontiers in Human Neuroscience, 7, 388. https://doi.org/10.3389/fnhum.2013.00388

    Google Scholar 

  • Mechelli, A., Crinion, J. T., Long, S., Friston, K. J., Lambon Ralph, M. A., Patterson, K., … Price, C. J. (2005). Dissociating reading processes on the basis of neuronal interactions. Journal of Cognitive Neuroscience, 17(11), 1753–1765. https://doi.org/10.1162/089892905774589190

    Google Scholar 

  • Metsala, J. L., Stanovich, K. E., & Brown, G. D. A. (1998). Regularity effects and the phonological deficit model of reading disabilities: A meta-analytic review. Journal of Educational Psychology, 90(2), 279–293. https://doi.org/10.1037/0022-0663.90.2.279

    Google Scholar 

  • Mitchel, A. D., & Weiss, D. J. (2011). Learning across senses: Cross-modal effects in multisensory statistical learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37(5), 1081–1091. https://doi.org/10.1037/a0023700

    Google Scholar 

  • Nakamura, K., Kuo, W.-J., Pegado, F., Cohen, L., Tzeng, O. J. L., & Dehaene, S. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20762–20767. https://doi.org/10.1073/pnas.1217749109

    Google Scholar 

  • Patterson, K. E. (1981). Neuropsychological approaches to the study of reading. British Journal of Psychology, 72(2), 151–174. https://doi.org/10.1111/j.2044-8295.1981.tb02174.x

    Google Scholar 

  • Paulesu, E., Danelli, L., & Berlingeri, M. (2014). Reading the dyslexic brain: Multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Frontiers in Human Neuroscience, 8, 830. https://doi.org/10.3389/fnhum.2014.00830

    Google Scholar 

  • Pavlidou, E. V., Kelly, M. L., & Williams, J. M. (2010). Do children with developmental dyslexia have impairments in implicit learning? Dyslexia, 16(2), 143–161. https://doi.org/10.1002/dys.400

    Google Scholar 

  • Perfetti, C. A., & Hart, L. (2002). The lexical quality hypothesis. In C. Elbro, L. T. Verhoeven, & P. Reitsma (Eds.), Precursors of functional literacy (pp. 189–213). Amsterdam/Philadelphia: John Benjamins Publishing Company.

    Google Scholar 

  • Perfetti, C. A., Liu, Y. G., Fiez, J. A., Nelson, J., Bolger, D. J., & Tan, L.-H. (2007). Reading in two writing systems: Accommodation and assimilation of the brain’s reading network. Bilingualism: Language and Cognition, 10(2), 131. https://doi.org/10.1017/S1366728907002891

    Google Scholar 

  • Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–238. https://doi.org/10.1016/j.tics.2006.03.006

    Google Scholar 

  • Prasada, S., & Pinker, S. (1993). Generalisation of regular and irregular morphological patterns. Language and Cognitive Processes, 8(1), 1–56. https://doi.org/10.1080/01690969308406948

    Google Scholar 

  • Preston, J. L., Molfese, P. J., Frost, S. J., Mencl, W. E., Fulbright, R. K., Hoeft, F., … Pugh, K. R. (2016). Print-speech convergence predicts future reading outcomes in early readers. Psychological Science, 27(1), 75–84. https://doi.org/10.1177/0956797615611921

    Google Scholar 

  • Price, C. J., Moore, C. J., Humphreys, G. W., & Wise, R. J. (1997). Segregating semantic from phonological processes during reading. Journal of Cognitive Neuroscience, 9(6), 727–733. https://doi.org/10.1162/jocn.1997.9.6.727

    Google Scholar 

  • Pugh, K. R., Frost, S. J., Rothman, D. L., Hoeft, F., Del Tufo, S. N., Mason, G. F., … Fulbright, R. K. (2014). Glutamate and choline levels predict individual differences in reading ability in emergent readers. The Journal of Neuroscience, 34(11), 4082–4089. https://doi.org/10.1523/JNEUROSCI.3907-13.2014

    Google Scholar 

  • Pugh, K. R., Frost, S. J., Sandak, R., Landi, N., Moore, D., Della Porta, G., … Mencl, W. E. (2010). Mapping the word reading circuitry in skilled and disabled readers. In P. Cornelissen, P. Hansen, M. Kringelbach, & K. Pugh (Eds.), The neural basis of reading (pp. 281–305). Oxford: Oxford University Press.

    Google Scholar 

  • Pugh, K. R., Frost, S. J., Sandak, R., Landi, N., Rueckl, J. G., Constable, R. T., … Mencl, W. E. (2008). Effects of stimulus difficulty and repetition on printed word identification: An fMRI comparison of nonimpaired and reading-disabled adolescent cohorts. Journal of Cognitive Neuroscience, 20(7), 1146–1160. https://doi.org/10.1162/jocn.2008.20079

    Google Scholar 

  • Pugh, K. R., Landi, N., Preston, J. L., Mencl, W. E., Austin, A. C., Sibley, D., … Frost, S. J. (2013). The relationship between phonological and auditory processing and brain organization in beginning readers. Brain and Language, 125(2), 173–183. https://doi.org/10.1016/j.bandl.2012.04.004

    Google Scholar 

  • Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., Lee, J. R., … Shaywitz, B. A. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation and Developmental Disabilities Research Reviews, 6(3), 207–213. https://doi.org/10.1002/1098-2779(2000)6:3\textless207::AID-MRDD8\textgreater3.0.CO;2-P

  • Rueckl, J. G., Paz-Alonso, P. M., Molfese, P. J., Kuo, W.-J., Bick, A., Frost, S. J., … Frost, R. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 15510–15515. https://doi.org/10.1073/pnas.1509321112

    Google Scholar 

  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928. https://doi.org/10.1126/science.274.5294.1926

    Google Scholar 

  • Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70(1), 27–52. https://doi.org/10.1016/S0010-0277(98)00075-4

    Google Scholar 

  • Sahin, N. T., Pinker, S., & Halgren, E. (2006). Abstract grammatical processing of nouns and verbs in Broca’s area: Evidence from fMRI. Cortex, 42(4), 540–562. https://doi.org/10.1016/S0010-9452(08)70394-0

    Google Scholar 

  • Sandak, R., Mencl, W. E., Frost, S. J., & Pugh, K. R. (2004). The neurobiological basis of skilled and impaired reading: Recent findings and new directions. Scientific Studies of Reading, 8(3), 273–292. https://doi.org/10.1207/s1532799xssr0803_6

    Google Scholar 

  • Shankweiler, D., Mencl, W. E., Braze, D., Tabor, W., Pugh, K. R., & Fulbright, R. K. (2008). Reading differences and brain: Cortical integration of speech and print in sentence processing varies with reader skill. Developmental Neuropsychology, 33(6), 745–775. https://doi.org/10.1080/87565640802418688

    Google Scholar 

  • Siegelman, N., Bogaerts, L., Christiansen, M. H., & Frost, R. (2017). Towards a theory of individual differences in statistical learning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372(1711). https://doi.org/10.1098/rstb.2016.0059

    Google Scholar 

  • Siok, W. T., Niu, Z., Jin, Z., Perfetti, C. A., & Tan, L. H. (2008). A structural-functional basis for dyslexia in the cortex of Chinese readers. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5561–5566. https://doi.org/10.1073/pnas.0801750105

    Google Scholar 

  • Stanovich, K. E., & Siegel, L. S. (1994). Phenotypic performance profile of children with reading disabilities: A regression-based test of the phonological-core variable-difference model. Journal of Educational Psychology, 86(1), 24–53. https://doi.org/10.1037//0022-0663.86.1.24

    Google Scholar 

  • Stockall, L., & Marantz, A. (2006). A single route, full decomposition model of morphological complexity: MEG evidence. The Mental Lexicon, 1(1), 85–123. https://doi.org/10.1075/ml.1.1.07sto

    Google Scholar 

  • Strain, E., & Herdman, C. M. (1999). Imageability effects in word naming: An individual differences analysis. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 53, 347–359.

    Google Scholar 

  • Szwed, M., Qiao, E., Jobert, A., Dehaene, S., & Cohen, L. (2014). Effects of literacy in early visual and occipitotemporal areas of Chinese and French readers. Journal of Cognitive Neuroscience, 26(3), 459–475. https://doi.org/10.1162/jocn_a_00499

    Google Scholar 

  • Taft, M., & Zhu, X. (1997). Submorphemic processing in reading Chinese. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(3), 761–775. https://doi.org/10.1037/0278-7393.23.3.761

    Google Scholar 

  • Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25(1), 83–91. https://doi.org/10.1002/hbm.20134

    Google Scholar 

  • Taraban, R., & McClelland, J. L. (1987). Conspiracy effects in word pronunciation. Journal of Memory and Language, 26(6), 608–631. https://doi.org/10.1016/0749-596X(87)90105-7

    Google Scholar 

  • Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction and integration framework: A two-process account of statistical learning. Psychological Bulletin, 139(4), 792–814. https://doi.org/10.1037/a0030801

    Google Scholar 

  • Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21(10), 1934–1945. https://doi.org/10.1162/jocn.2009.21131

    Google Scholar 

  • Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6(7), 767–773. https://doi.org/10.1038/nn1065

    Google Scholar 

  • van Zuijen, T. L., Plakas, A., Maassen, B. A. M., Maurits, N. M., & van der Leij, A. (2013). Infant ERPs separate children at risk of dyslexia who become good readers from those who become poor readers. Developmental Science, 16(4), 554–563. https://doi.org/10.1111/desc.12049

    Google Scholar 

  • Vasuki, P. R. M., Sharma, M., Ibrahim, R. K., & Arciuli, J. (2017). Musicians’ online performance during auditory and visual statistical learning tasks. Frontiers in Human Neuroscience, 11, 114. https://doi.org/10.3389/fnhum.2017.00114

    Google Scholar 

  • Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55(1), 143–156. https://doi.org/10.1016/j.neuron.2007.05.031

    Google Scholar 

  • Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1994). Development of reading-related phonological processing abilities: New evidence of bidirectional causality from a latent variable longitudinal study. Developmental Psychology, 30(1), 73–87. https://doi.org/10.1037//0012-1649.30.1.73

    Google Scholar 

  • Westbury, C., & Buchanan, L. (2002). The probability of the least likely non-length-controlled bigram affects lexical decision reaction times. Brain and Language, 81(1–3), 66–78. https://doi.org/10.1006/brln.2001.2507

    Google Scholar 

  • Zhao, J., Bi, H. Y., & Wang, Y. M. (2011). Development of phonetic radical neighborhood effect and consistency effect in Chinese character naming. Chinese Journal Ergonomics, 17(1), 1–4.

    Google Scholar 

  • Zhao, J., Li, Q.-L., & Bi, H.-Y. (2012). The characteristics of Chinese orthographic neighborhood size effect for developing readers. PloS One, 7(10), e46922. https://doi.org/10.1371/journal.pone.0046922

    Google Scholar 

  • Zhao, J., Wang, X., Frost, S. J., Sun, W., Fang, S.-Y., Mencl, W. E., … Rueckl, J. G. (2014). Neural division of labor in reading is constrained by culture: A training study of reading Chinese characters. Cortex, 53, 90–106. https://doi.org/10.1016/j.cortex.2014.01.003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hui Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Hung, YH., Frost, S.J., Pugh, K.R. (2018). Domain Generality and Specificity of Statistical Learning and its Relation with Reading Ability. In: Lachmann, T., Weis, T. (eds) Reading and Dyslexia. Literacy Studies, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-90805-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90805-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90804-5

  • Online ISBN: 978-3-319-90805-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics